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We present a lattice calculation of the vector form factor of the pion for two flavours of non-

perturbatively Opaq improved Wilson fermions. For the measurements we utilise the CLS

ensembles which include various lattice spacings and pion masses down to about 250 MeV.

To obtain a fine momentum resolution near zero momentum transfer (q2) partially twisted

boundary conditions are employed using several twist angles. Due to the fine resolution

around q2 “ 0 we are able to determine the slope of the form factor and, in turn, extract the

charge radius of the pion without any model dependence. The results for the form factor

and the charge radius are then compared to chiral perturbation theory and phenomenological

models which are used to extrapolate the results to the physical point.

Over the last years Monte-Carlo simulations of lattice QCD started to produce accurate and
reliable results for a number of quantities of phenomenological interest, such as e.g. the
spectrum of the low lying hadrons and light quark masses (see e.g. [1] and [2]). Despite
good agreement between theory and experiment for these quantities there are others where
lattice QCD does not coincide with experiment. The origin of these discrepancies is not
clear since a number of systematic effects have to be controlled both in experiment and
simulations. A particular example where experiment and theory are not in satisfactory
agreement are observables connected with structural properties of the nucleon, such as
electric and magnetic form factors as well as the nucleon axial charge (see e.g. [3–6]).
Another technically simpler observable where similar systematic effects enter is the pion
electromagnetic form factor fππpq2q, where q is the momentum transfer. The fact that fππ

receives no contribution from quark-disconnected diagrams for two degenerate flavours
makes it the ideal observable to perform a precision calculation in lattice QCD. Nevertheless,
in the region of small momentum transfers the extraction of fππpq2q usually suffers from an
intrinsic model dependence, since a direct calculation in that region has not been possible
so far for both experiment and theory. Related to the pion form factor in that kinematical
regime is the pion charge radius
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β a[fm] lattice # masses mπ L Labels Statistic
5.20 0.08 64ˆ 323 3 6.0 – 4.0 A3 – A5 Op100q
5.30 0.07 64ˆ 323 2 6.2, 4.7 E4, E5 Op100q
5.30 0.07 96ˆ 483 1 5.0 F6 233
5.50 0.05 96ˆ 483 3 7.7 – 5.3 N3 – N5 Op100q

Table 1: Compilation of simulation parameters.

The extraction of
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is thus mostly governed by the modeling of the q2-dependence of
fππ unless results are available around q2 « 0. In lattice QCD the accessible momenta are
usually obtained by Fourier transformation and thus constrained by finite lattice volume.
This has changed recently by the introduction of partially twisted boundary conditions [8,9]
that in principle allow arbitrary small momentum transfers in lattice simulations [10].

Our calculation of fππ employs ensembles generated in the context of the CLS project2

and include three different lattice spacings with three different pion masses each. The
main parameters of the ensembles used in the analysis are shown in table 1. To reduce the
statistical noise we use stochastic Zp2q ˆ Zp2qwall sources for the computation of the quark
propagators, see e.g. [7]. The momenta are generated by five twist angles tuned so as to
obtain as many as 30 values of q2 below the lowest accessible q2 from Fourier-momentum.
We express our result in units of the Sommer scale r0 [11] in the chiral limit, which has been
measured for these ensembles in [12]. To compare our data to experimental results and
results from other collaborations we use r0 “ 0.471 fm as obtained in [13]. To make optimal
use of the generated data we extract fππ using a combination of the three different ratios
of two- and three-point functions defined in [10]. The error bars are estimated with the
bootstrap method using 1000 samples. For more details of the simulations see [14] and [6]
as well as our upcoming publication.

The results for the pion form factor on our lightest ensemble for each lattice spacing are
shown in figure 1, together with the results from [15–17] and the experimental results
from [18]. Our points reach down to pr0 qq2 À ´10´4 with small statistical uncertainties.
This enables us to use a linear fit to fππpq2q in the region pr0 qq2 ď ´0.15 to extract
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without any model dependence. The results from the linear fit are shown in figure 2 (left)
for all ensembles, together with the other results quoted above. We see consistency with the
results from other collaborations. Note that our results might show some residual cut-off
dependence, investigated in our forthcoming publication.

Since our quark masses are bigger than the physical ones, we have to perform a chiral
extrapolation to the physical point, guided by chiral perturbation theory (χPT). The χPT
expressions for fππ, and thus also for
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, have been worked out to next-to-next-to leading
order (NNLO) in [19]. As an intermediate step to compare to the NNLO formulae we start
with the comparison to NLO, which was derived in [20]. In figure 2 (right) we show the
results for the only free parameter `6 from the fit with pr0 qq2 ď ´0.15 against pmπ r0q

2.

2https://twiki.cern.ch/twiki/bin/view/CLS/WebHome
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Figure 1: Results for the pion form factor for the lightest quark mass for each lattice
spacing compared with the results from PACS-CS [15], ETMC [16] and UKQCD [17], as
well as the experimental results from [18]. The right figure is the inset in the top left-hand
corner.
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Figure 2: Left: Results for the pion charge radius extracted from linear fits to fππpq2q in
the region pr0 qq2 ď ´0.15 against pmπ r0q

2 together with results from other collaborations.
Right: Results for `6 against pmπ r0q
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If χPT to NLO were a good description for the mass range of our simulations we would
expect `6 to be constant, which is apparently not the case. This observation is consistent
with the findings of earlier studies as e.g. in [15, 16]. To make a statement on
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at the
physical point we thus envisage to use χPT to NNLO. In addition, finite volume effects
as well as lattice artefacts, which might still be present in our analysis, are not taken into
account so far. The discussion of the corresponding analysis of both, χPT to NNLO and
finite volume effects and lattice artefacts, is postponed to a later publication.

Conclusions: In this proceedings article we have given an overview on our ongoing
determination of the electromagnetic form factor of the pion in lattice QCD. We use twisted
boundary conditions to attain a high density of measurements around q2 “ 0 which allows
us to extract the charge radius without residual model dependence. We have compared
our measurements to χPT at NLO and conclude that NLO is insufficient to describe the
data in this mass range consistently. In the final analysis we are going to compare our
measurements to χPT at NNLO and perform detailed studies on cut-off effects, finite
volume effects and contributions to the form factor from excited states.
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