We present our recent study of $I=1/2$ scalar meson (κ meson) by the lattice QCD simulation.

1 Introduction

The $I=0$ scalar meson (σ) and $I=1/2$ meson (κ) are still a source of debated. The σ meson is now listed in the table of the Particle Data Group (PDG) [1]. Recent experimental candidates for the neutral κ are reported to have a mass about 800 MeV [2, 3]. Moreover the charged κ is observed to be about 800 MeV by BES II collaboration [4, 5]. However, the κ meson is not currently included in the table of the PDG summary [1]. These mesons can not be usual $q\bar{q}$ mesons as described in the non-relativistic constituent quark model since in such a quark model, $J^{PC}=0^{++}$ meson is realized in the 3P_0 state, which implies that the mass of the these mesons must be as high as $1.2 \sim 1.6$ GeV. Several approaches based on QCD have been performed the understanding of the structure of these mesons have not been settled yet [6–8].

There have been several attempts at lattice study of $I=1/2$ scalar meson. The first such calculation was carried out our (Scalar) collaboration [9]. All the lattice results for $I=1/2$ scalar meson with the used $\bar{s}q$ (where q is u and d) operator are consistent with mass of the K_0^\ast, but inconsistent the κ meson [9, 10, 12–14]. Recently, Prelovsek et al. presented the $I=1/2$ light scalar meson using the tetra quark type interpolating operators with the dynamical simulations and quenched simulations [15]. However they omitted the disconnected contributions.

2 Method and simulation

We perform dynamical simulations on $I=1/2$ scalar meson with much higher statistics and larger lattice volume than the previous simulations. We report the current status of our new data.

\[1\]

1motoo@kokushikan.ac.jp
We use gauge configurations from CP-PACS collaboration [16]. These configurations were generated with renormalization group improved gauge action and the Wilson-clover quark action. Our calculation is based upon the variational method. This method is to use several interpolating operators. The following interpolating operators were adopted the $s_i \Gamma q_j$, ($i,\ j = p, n, w$). These operators are constructed from Jacobi smeared quarks of Gaussian type sources and sinks [11]. The subscript p denotes the point source. And the subscripts n, w denote the type of smearing used. Γ is gamma matrix.

We use 70 gauge configurations for our analysis of $I=1$ channel. We work on $16^3 \times 32$ lattice at $\beta=1.95$ and $C_{sw}=1.5300$ with $a=0.1555(17)$ fm. The vale of the hopping parameter for $h_{u/d}$ for u/d quark is $h_{u/d}=0.1390$. Our mass ratio for $m_\pi/m_\rho = 0.741(5)$ is consistent with $m_\pi/m_\rho =0.752(1)$ by CP-PACS with hopping parameter $h=0.1390$.

![Graph](image)

Figure 1: Effective mass of a_0 ($I=1$) and κ ($I=1/2$).

For our analysis of $I=1/2$ channel, we use 50 gauge configurations. We work on $16^3 \times 32$ lattice at $\beta=1.95$ and $C_{sw}=1.5300$ with $a=0.1555(17)$ fm. The value of the hopping parameter for $h_{u/d}$ for u/d quark is $h_{u/d}=0.1390$ and the value of hopping parameter for s quark is $h_s=0.1375$. The s quark is valence approximation. Figure 1 shows the results for the effective mass a_0 ($I=1$) and κ meson. We have presented tentative results for mass ratio $m_{a_0}/m_\rho=1.30(6)$ and $m_\kappa/m_\rho=1.29(5)$.

3 Summary

Our simulations are the preliminary stage. The mass for scalar meson is more noisy than for π meson and ρ meson. It is necessary to generate much more gauge configurations and improve the statistical precision of the estimation of the κ meson.

The calculation was carried out on SX-9 at RCNP, Osaka University.
References