I = 1/2 scalar meson in lattice QCD

Motoo Sekiguchi^{1,a}, Teiji Kunihiro^b, Shin Muroya^c, Atsushi Nakamura^d, Chiho Nonaka^e, and Hiroaki Wada^a

^aKokushikan University, ^bKyoto University, ^cMatsumoto University, ^dHiroshima University, ^eNagoya University

We present our recent study of I=1/2 scalar meson (κ meson) by the lattice QCD simulation.

1 Introduction

The I=0 scalar meson (σ) and I=1/2 meson (κ) are still a source of debated. The σ meson is now listed in the table of the Particle Data Group (PDG) [1]. Recent experimental candidates for the neutral κ are reported to have a mass about 800 MeV [2,3]. Moreover the charged κ is observed to be about 800 MeV by BES II collaboration [4,5]. However, the κ meson is not currently included in the table of the PDG summary [1]. These mesons can not be usual $q\bar{q}$ mesons as described in the non-relativistic costituent quark model since in such a quark model, $J^{PC}=0^{++}$ meson is realized in the ³ P_0 state, which implies that the mass of the these mesons must be as high as $1.2 \sim 1.6$ GeV. Several approches based on QCD have been performed the understanding of the structure of these mesons have not been setled yet [6–8].

There have been several attempts at lattice study of I=1/2 scalar meson. The first such calculation was carried out our (Scalar) collaboration [9]. All the lattice results for I=1/2 scalar meson with the used $\bar{s}q$ (where q is u and d) operator are consistent with mass of the K_0^* , but inconsistent the κ meson [9,10,12–14]. Recently , Prelovsek *et al.* presented the I=1/2 light scalar meson using the tetra quark type interpolating operators with the dynamical simulations and quenched simulations [15]. However they omitted the disconnected contributions.

2 Method and simulation

We perform dynamical simulations on I=1/2 scalar meson with much higher statistics and lager lattice volume than the previous simulations. We report the current status of our new data.

¹motoo@kokushikan.ac.jp

We use gauge configurations from CP-PACS collaboration [16]. These configurations were generated with renormalization group improved gauge action and the Wilson-clover quark action. Our calculation is based upon the variational method. This method is to use several interpolating operators. The following interpolating operators were adopted the $\bar{s}_i \Gamma q_j$, (*i*, j = p, n, w). These operators are constructed from Jacobi smeared quarks of Gaussian type sources and sinks [11]. The subscript *p* denotes the point source. And the subscripts *n*, *w* denote the type of smearing used. Γ is gamma matrix.

We use 70 gauge configurations for our analysis of I=1 channel. We work on $16^3 \times 32$ lattice at β =1.95 and C_{sw} =1.5300 with a=0.1555(17) fm. The vale of the hopping parameter for $h_{u/d}$ for u/d quark is $h_{u/d}$ =0.1390. Our mass ratio for m_{π}/m_{ρ} = 0.741(5) is consistent with m_{π}/m_{ρ} =0.752(1) by CP-PACS with hopping parameter h=0.1390.

Figure 1: Effective mass of a_0 (I=1) and κ (I=1/2).

For our analysis of I=1/2 channel, we use 50 gauge configurations. We work on $16^3 \times 32$ lattice at β =1.95 and C_{sw} =1.5300 with a=0.1555(17) fm. The value of the hopping parameter for $h_{u/d}$ for u/d quark is $h_{u/d}$ =0.1390 and the value of hopping parameter for s quark is h_s =0.1375. The s quark is valence approximation. Figure 1 shows the results for the effective mass a_0 (I=1) and κ meson. We have presented tentative results for mass ratio m_{a_0}/m_{ρ} =1.30(6) and m_{κ}/m_{ρ} =1.29(5).

3 Summary

Our simulations are the preliminary stage. The mass for scalar meson is more noisy than for π meson and ρ meson. It is necessary to generate much more gauge configurations and improve the statistical precision of the estimation of the κ meson.

The calculation was carried out on SX-9 at RCNP, Osaka University.

References

- [1] Particle Data Group Collaboration, K. Nakamura et al., J. Phys. G37 075021 (2011).
- [2] E791 Collaboration, M. Aitala et al., Phys. Rev. Lett. 89, 121801 (2002).
- [3] BES Collaboration, M. Ablikim et al., Phys. Lett. B633, 681 (2006).
- [4] BES Collaboration, M. Ablikim et al., Phys. Lett. B693, 88 (2010).
- [5] BES Collaboration, M. Ablikim *et al.*, Phys. Lett. **B698**, 183 (2011).
- [6] S. Narison, Nucl. Phys. B186 (Proc. Suppl.), 306 (2009), and references therein.
- [7] T. Hyodo, D. Jido and T. Kunihiro, Nucl. Phys 848, 341 (2010), and references therein.
- [8] J. Nebreda and J.R. Peláez, Phys Rev D81, 054035 (2010), and references therein.
- [9] SCALAR Collaboration, Phys. Rev. D70, 034504 (2004).
- [10] SCALAR Collaboration, Phys. Lett. B652, 250 (2007).
- [11] C. Gattringer et al., Phys. Rev. D78, 034501 (2008).
- [12] S. Prelovsek, C. Dawson, T. Izubuchi K. Orginos and A. Soni, Phys. Rev. D70, 094503 (2004).
- [13] UKQCD Collaboration, C. McNeile and C. Michael, Phys. Rev. D74, 014508 (2006).
- [14] N. Mathur et al., Phys. Rev. D76, 114505 (2007).
- [15] S. Prelovsek et al., Phys Rev. D82, 094507 (2010).
- [16] CP-PACS Collaboration, S. Aoki et al., Phys. Rev. D67, 034503 (2003).