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In quark potential models the hyperfine splitting of P-wave mesons is zero in the nonrelativistic

limit, a prediction strikingly confirmed by experiment in both charmonia and bottomonia. The

result, however, ignores the coupling of bare quarkonia to meson-meson pairs. This coupling

causes mass shifts among the states and so could potentially spoil the quark model prediction.

This turns out not to be the case: in a variety of models the hyperfine splitting remains small

despite large mass shifts. This is shown to be a generic feature of models in which the coupling

involves the creation of a light quark pair with spin-one and the quark spin wavefunctions are

conserved. This talk reports on the results of ref. [1].

In quark potential models the mass MSLJ of a meson of spin S, orbital angular momentum
L and total angular momentum J can be expressed in perturbation theory,

(1) MSLJ “ M` ∆sx
1
2

1
2yS ` ∆txTySLJ ` ∆oxL ¨ SySLJ ,

in terms of expectations values M, ∆s, ∆t and ∆o of the spin-independent, spin-spin, tensor
and spin-orbit terms. For P-wave mesons the hyperfine splitting ∆s, which can be expressed
in terms of the meson masses by taking the appropriate linear combination of the above,

(2)
1
9
`

M3P0
` 3M3P1

` 5M3P2

˘

´M1P1
“ ∆s,

is zero in the nonrelativistic limit. The experimental charmonia [2] and bottomonia [3, 4]
masses are in excellent agreement with this prediction :

Mχcp1Pq ´Mhcp1Pq “ `0.02˘ 0.19˘ 0.13 MeV(CLEO),

Mχbp1Pq ´Mhbp1Pq “ `2˘ 4˘ 1 MeV(BaBar),

Mχbp1Pq ´Mhbp1Pq “ `1.62˘ 1.52 MeV(Belle),

Mχbp2Pq ´Mhbp2Pq “ `0.48`1.57
´1.22 MeV(Belle).

The quark model result ignores the effect of the coupling of bare quarkonia to meson-meson
pairs. This “unquenching” causes mass shifts, and since the χ0, χ1, χ2 and h have different
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Ref. ∆M3P0
∆M3P1

∆M3P2
∆M1P1

Ind.
[5] 1P, cc 459 496 521 504 ´1.8
[6] 1P, cc 198 215 228 219 ´1.3
[7] 1P, cc 35 38 63 52 ´2.9
[8] 1P, cc 131 152 175 162 ´0.4
[9] 1P, cc 173 180 185 182 0.0
[9] 1P, bb 43 44 45 44 ´0.4
[9] 2P, bb 55 56 58 57 0.0
[10] 1P, bb 80.777 84.823 87.388 85.785 ´0.013
[10] 2P, bb 73.578 77.608 80.146 78.522 ´0.048

Table 1: The magnitudes of the mass shifts computed in various models. The final column
“Ind.” shows the induced hyperfine splitting due to loop effects.

spin and total angular momenta, their couplings and therefore mass shifts differ. This leads
to deviations from the quenched mass formula (1), which one might expect could spoil the
quark model result.

Remarkably, this is not the case. Table 1 shows the mass shifts ∆MSLJ of P-wave cc and
bb due to coupling to pseudoscalar and vector mesons, computed in a variety of different
approaches 2. Although the mass shifts can be large, the relative shift between any two
states is much smaller, which to some extent explains the empirical success of quenched
quark models [5,9]. The relative shifts are, however, still large compared to the experimental
hyperfine splittings. It is therefore striking to note that their linear combination

(3) ´
1
9
`

∆M3P0
` 3∆M3P1

` 5∆M3P2

˘

` ∆M1P1
,

which is the correction to equation (2) due to unquenching, is much smaller still: these
induced hyperfine splittings are presented in the final column “Ind.” of the table. It thus
appears that there is some mechanism in place protecting the smallness of the hyperfine
splitting. This is particularly interesting given that the various models differ in several
respects.

A feature common to all of the models is that the coupling involves the creation of a light
quark pair in spin triplet. The quark spin and spatial degrees of freedom factorise so that
the amplitude for the coupling can be expressed as a linear combination of spatial matrix
elements weighted by angular momentum recoupling factors. For the coupling to a pair
of S-wave mesons there is a single spatial matrix element Al for each partial wave l [11].
The corresponding recoupling coefficients Cs1s2l

SLJ , for the coupling of a state with S, L and J
quantum numbers to a pair of S-wave mesons with spins s1, s2, can be deduced from the
general expression of ref. [12].

2The values quoted for ref. [10] correct a factor of 2 in the coupling of χb0 to bottom-strange meson pairs.
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For a channel described by binding energy εs1s2
SLJ and reduced mass µs1s2 , the (downward)

mass shift and meson-meson probability are, respectively,

(4) ∆Ms1s2l
SLJ “ Cs1s2l

SLJ

ż

dp
p2|Alppq|2

εs1s2
SLJ ` p2{2µs1s2

, Ps1s2l
SLJ “ Cs1s2l

SLJ

ż

dp
p2|Alppq|2

´

εs1s2
SLJ ` p2{2µs1s2

¯2 .

Introducing a quantity Xs1s2
SLJ , which parameterizes the reduced mass and binding energy

of a given channel in terms of the spin-averaged values µ and ε (those corresponding to
setting all spin splittings to zero),

(5) µs1s2 εs1s2
SLJ “ µεp1` Xs1s2

SLJ q,

the mass shift can be expressed in a power series expansion,

(6) ∆Ms1s2l
SLJ “ Cs1s2l

SLJ
µs1s2

µ

1
ε

8
ÿ

n“0

p´Xs1s2
SLJ q

n
ż

dp
p2|Alppq|2

p1` p2{2µεqn`1 .

The first two terms in the series involve the integrals in the two equations (4), but with µ

and ε in place of µs1s2 and εs1s2
SLJ . These terms can be thought of as the the spin-averaged mass

shift and meson-meson probability. Calling these ∆Ml and Pl , the approximate formula for
the mass shift due to a given channel is

(7) ∆Ms1s2l
SLJ « Cs1s2l

SLJ
µs1s2

µ

´

∆Ml ´ Xs1s2
SLJ εPl

¯

,

which turns out to be a reasonable approximation for cc and an excellent approximation
for bb. The total mass shift is the sum over those of the different channels, which is
straightforward using the properties of the coefficients Cs1s2l

SLJ . The correction (3) to the
hyperfine splitting due to channel coupling follows immediately; everything cancels except
a term proportional to ∆s,

(8) ´
1
9
`

∆M3P0
` 3∆M3P1

` 5∆M3P2

˘

` ∆M1P1
“ ´∆s

ÿ

l

Pl .

Thus to this order, in the nonrelativistic limit (∆s “ 0) the result of zero hyperfine splitting
survives corrections due to unquenching. The small hyperfine splittings in Table 1 are
indicative of the magnitude of quadratic corrections to the expansion (7), and the smallness
of Xs1s2

SLJ explains why the mechanism works even better for bb than cc.

The mechanism relies on the factorisation of quark spin and spatial degrees of freedom and
the assumption that the coupling involves the creation of a quark pair with spin one. The
observed small hyperfine splittings thus supports this picture, which is also consistent with
lattice QCD [13].

The same mechanism protects the hyperfine splitting of D-wave and higher L mesons; thus
one can predict the mass of the 1D2 bottomonium in terms of the 3D1,2,3, as in ref. [14].
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Notice in Table 1 that in each model the induced hyperfine splitting is less than (or equal to)
zero. If the physical hyperfine splitting is positive, as is favoured by the bulk of experimental
and lattice data, then in the absence of some other effect the bare potential model splitting
∆s must be positive. This may help to distinguish among different models, which disagree
on the sign of ∆s [15].

Another common feature is the hierarchy of mass splittings,

(9) ∆M3P2
ą ∆M1P1

ą ∆M3P1
ą ∆M3P0

,

which implies that unquenching brings meson masses closer together with respect to their
bare values. Comparison of quenched and unquenched lattice QCD calculations would be
an interesting test of this effect.
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