# Mixing properties of $a_{1}(\mathbf{1 2 6 0})$ meson consisting of hadronic composite and quark composite 

Hideko Nagahiro ${ }^{1, a b}$, Kanabu Nawa ${ }^{b}$, Sho Ozaki ${ }^{c}$, Daisuke Jido ${ }^{d}$, and Atsushi Hosaka ${ }^{b}$<br>${ }^{a}$ Department of Physics, Nara Women's University, Nara 630-8506, Japan<br>${ }^{b}$ Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan<br>${ }^{\text {c Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan }}$<br>${ }^{d}$ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan


#### Abstract

A practical method to analyze the mixing structure of hadrons consisting of two components of quark and hadronic composite is discussed. As an example we investigate the properties of the axial vector meson $a_{1}(1260)$ and discuss its mixing properties quantitatively.


One of recent interests in the hadron structure is whether hadrons are made up of quarks described in the conventional quark model, or rather develop subcomponents of quarkclusters inside hadrons. In fact, hadronic resonant states physically observed should be mixture of more than one component like hadronic and quark-composites, an important issue is to clarify how these components are mixed in a hadron. In this work, we focus on hadron structure having two components of quark and hadronic composite. We propose a method to disentangle their mixture, by taking the $a_{1}(1260)$ meson as an example. The $a_{1}$ is a candidate of the chiral partner of $\rho$ described as a $q \bar{q}$ in many models, while, in coupled-channel approaches based on the chiral effective theory, the $a_{1}$ meson has been described as a dynamically generated resonance in the $\pi \rho$ scattering [1-3]. We first solve the $\pi \rho$ scattering amplitude to find the poles corresponding to the physical $a_{1}$, and then develop a method to clarify its mixing nature. The detailed discussions are given in Ref. [4].
By solving the Bethe-Salpeter equation, we can obtain the $\pi \rho$ scattering amplitude as

$$
\begin{equation*}
t=\frac{v}{1-v G} \tag{1}
\end{equation*}
$$

where $v$ is the four-point Weinberg-Tomozawa interaction and $G \pi \rho$ two-body propagator. If the potential $v$ is sufficiently attractive, the amplitude develops a pole corresponding to the $\pi \rho$-composite $a_{1}$ meson [1] without $q \bar{q}$ quark-core [5,6].
The elementary $a_{1}$ meson also contributes to the $\pi \rho$ scattering amplitude in the form of an effective $\pi \rho$ interaction: $v_{a_{1}}=g\left(s-m_{a_{1}}^{2}+i \epsilon\right)^{-1} g$, where $g$ is the coupling to $\pi \rho$ and $m_{a_{1}}$

[^0]the bare mass of the elementary $a_{1}$ meson. The full scattering amplitude $T$ having both interactions $v$ and $v_{a_{1}}$ is then written by,
\[

$$
\begin{equation*}
T=\frac{v+v_{a_{1}}}{1-\left(v+v_{a_{1}}\right) G} . \tag{2}
\end{equation*}
$$

\]

This amplitude generates poles corresponding to physical resonant states of the problem. To study the mixing nature, we express equivalently the amplitude $t$ in Eq. (1) as,

$$
\begin{equation*}
t \equiv g_{R}(s) \frac{1}{s-s_{p}} g_{R}(s), \tag{3}
\end{equation*}
$$

where $s_{p}$ is the pole position of the amplitude $t$ in Eq. (1). In this form, we can interpret $\left(s-s_{p}\right)^{-1}$ as the one-particle propagator of the composite $a_{1}$ meson by taking an analogy with the conventional discussion of bound state problem [5]. Having the form of Eq. (3), we now rewrite the scattering amplitude $T$ in Eq. (2) as,

$$
\begin{equation*}
T=\left(g_{R}, g\right) \frac{1}{\hat{D}_{0}^{-1}-\hat{\Sigma}}\binom{g_{R}}{g} \tag{4}
\end{equation*}
$$

where

$$
\hat{D}_{0}^{-1}=\left(\begin{array}{cc}
s-s_{p} &  \tag{5}\\
& s-m_{a_{1}}^{2}
\end{array}\right), \hat{\Sigma}=\left(\begin{array}{cc} 
& g_{R} G g \\
g G g_{R} & g G g
\end{array}\right) .
$$

The diagonal elements of the matrix $\hat{D}_{0}$ are the free propagators of the two $a_{1}$ 's, one for the composite and the other for the elementary ones having the proper normalization, and the matrix $\hat{\Sigma}$ expresses the self-energy and interactions for these modes.
The expression of Eq. (4) makes it possible to analyze the mixing nature of the physical $a_{1}$ in terms of the original two bases. Having the amplitude in this form, $\hat{D} \equiv\left(\hat{D}_{0}^{-1}-\hat{\Sigma}\right)^{-1}$ is identified with the propagators of the physical states represented by the bases of the elementary and composite $a_{1}$ 's. The residues of the diagonal elements $D^{i i}$ defined by,

$$
\begin{equation*}
D^{i i}=\frac{z_{a}^{i i}}{s-M_{a}^{2}}+\frac{z_{b}^{i i}}{s-M_{b}^{2}}+(\text { regular term })(i=1,2) \tag{6}
\end{equation*}
$$

have the meaning of the wave function renormalization and then carry the information on the mixing rate of the physical resonant states. The concrete forms of the potentials used in Eq. (2) are given in Ref. [4].

We find two poles at (a) $\sqrt{s}=1033-107 i \mathrm{MeV}$ and at (b) $1728-313 i \mathrm{MeV}$, corresponding to the physical states in the present model. These pole positions are significantly different from those of the two basis states, $\sqrt{s_{p}}=1012-221 i \mathrm{MeV}$ and $m_{a_{1}}=1189 \mathrm{MeV}$, because of the mixing effect. In Fig. 1(a), we show the resulting pole-flow in the complex-energy plane by changing the mixing parameter $x$ introduced by $g_{a_{1} \pi \rho} \rightarrow x g_{a_{1} \pi \rho}$. When the mixing is turned on, the pole starting from the composite $a_{1}$ (we refer to it as "pole-a") approaches


Figure 1: (a) Trajectories of the poles in the full scattering amplitude in Eq. (2) by changing the mixing parameter $x$ (thick lines). The open square indicates the pole position of the composite $a_{1}$ and open circle indicates the elementary $a_{1}$ pole $(x=0)$. The other end points of solid circle and square correspond to the physical points $(x=1)$. Thin lines represent the pole-flows as $N_{c}$ is increased from $N_{c}=3$ for fixed $x$. (b) Squared amplitude $|T|^{2}$ of $\pi \rho \rightarrow \pi \rho$ process on the real energy axis for the mixing parameter $x=1$.
the real axis, ending at $1033-107 i \mathrm{MeV}$ when $x=1$ (solid square), while that from the elementary $a_{1}$ pole ("pole-b") goes far from the real axis and reaches $1728-313 i \mathrm{MeV}$ when $x=1$ (solid circle). In Fig. 1(b), we show the squared amplitude $|T|^{2}$ in Eq. (2) (or (4)) at $x=1$, and find that a peak structure is dominated by the pole-a. Therefore, the pole expected to be observed in experiments is the pole-a located at lower energy position that comes from the composite $a_{1}$ pole.


Figure 2: Absolute value of the residues defined in Eq. (6). The left panel shows the mixing parameter $x$ dependence at $N_{c}=3$ while the right panel is the $N_{c}$ dependence at $x=0.8$. The meaning of each line is indicated in the figure.

In Fig. 2(left panel) we show the absolute values of the residues as functions of the mixing parameter $x$. One of the most important messages can be read from the magnitude of $z_{a}^{11}$ and $z_{a}^{22}$ at $x=1$, which are the residues of the possibly observed $a_{1}$ state. We can see that
the pole-a at $x=1$, although its location is close to the composite $a_{1}$ pole, has a component of the elementary $a_{1}$ meson comparable to that of the composite $a_{1}$. The detailed discussions are given in Ref. [4].
Next, we test the large $N_{c}$ dependence of the pole positions according to the scaling law of the pion decay constant $f_{\pi}$ as $f_{\pi} \rightarrow f_{\pi} \sqrt{N_{c} / 3}$. In Fig. 1, we also show the trajectories of the pole positions by changing the $N_{c}$ value for fixed mixing strength. The fate of the large $N_{c}$ depends strongly on the mixing parameter $x$, although the component of the composite $a_{1}$ is always larger than that of elementary $\left(z_{a}^{11}>z_{a}^{22}\right)$ at $N_{c}=3$ as shown in Fig. 2 (left panel). In Fig. 2 (right panel), we show the $N_{c}$ dependence of the residues of pole-a at $x=0.8$. There we find that the magnitudes of the residues of the pole-a, $z_{a}^{11}$ and $z_{a}^{22}$, interchange at $N_{c} \sim 3.5$. This indicates that the nature of the resonance changes as $N_{c}$ is varied. Thus, for the mixed system of elementary and composite components, the large $N_{c}$ limit does not always reflect the world at $N_{c}=3$.

We have developed a general method to analyze the mixing structure of hadrons consisting of two components of quark and hadronic composites by taking the $a_{1}(1260)$ axial-vector meson as an example. The present analysis points out theoretically that the $a_{1}$ meson has comparable amount of the elementary $a_{1}$ component to the $\pi \rho$ composite $a_{1}$. We also have shown explicitly that the mixing nature of hadrons in the large $N_{c}$ limit could differ from that at finite $N_{c}=3$. Quest for evidences of the mixing nature in physical observables is an interesting future work.

## Acknowledgments

This work is in part supported by Grant-in-Aid for Scientific Research (Nos. 22105510, 22105509, 22105507 and E01:21105006). This work was done in part under the Yukawa International Program for Quark-hadron Sciences (YIPQS).

## References

[1] L. Roca, E. Oset, and J. Singh. Phys. Rev. D72, 014002 (2005).
[2] M. F. M. Lutz and E. E. Kolomeitsev. Nucl. Phys. A730, 392-416 (2004).
[3] H. Nagahiro, L. Roca, A. Hosaka, and E. Oset. Phys. Rev. D79, 014015 (2009).
[4] H. Nagahiro, K. Nawa, S. Ozaki, D. Jido, A. Hosaka, Phys. Rev. D83, 111504 (2011).
[5] D. Lurie and A. J. Macfarlane. Phys. Rev. 136, B816 (1964).
[6] T. Hyodo, D. Jido, and A. Hosaka. Phys. Rev. C78, 025203 (2008).


[^0]:    ${ }^{1}$ nagahiro@cc.nara-wu.ac.jp

