Results on Charmonium and Charmonium-like States at the Belle Experiment

Jens Sören Lange¹ on behalf of the Belle Collaboration Justus-Liebig-Universität Giessen, II. Physikalisches Institut, D-35392 Giessen, GERMANY

New results of the Belle experiment at the KEKB asymmetric e^+e^- collider are presented, in particular (*a*) measurement of the mass and width of the η_c and η'_c in *B* meson decays, (*b*) measurement of the mass, width and quantum numbers of the X(3872) and (*c*) observation of the χ_{c2} in *B* meson decays.

1 η_c and η'_c in *B* meson decays

The η_c is the 1^1S_0 ground state of charmonium with quantum numbers $J^{PC}=0^{-+}$. The η'_c represents the first radial excitation 2^1S_0 . As a long-standing puzzle the width of the η_c has been determined with large discrepancies between experiments with different production mechanisms: in J/ψ and ψ' radiative decays $\Gamma_{\eta_c} \simeq 15$ MeV, in *B* meson decays or $\gamma\gamma \rightarrow \eta_c$ $\Gamma_{\eta_c} \simeq 30$ MeV [1]. One possible reason is the fact that in radiative decays the cross section is varying with the photon energy according to E^a_{γ} with an exponent $3 \le a \le 7$, and thus leading to a distorted line shape of the observed η_c signal. However, in the case of the latter production mechanisms a Breit-Wigner lineshape is considered a valid parametrisation.

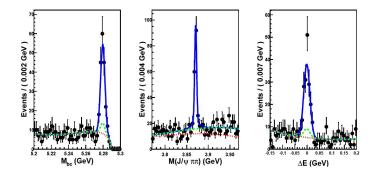
In a new analysis of $B^+ \rightarrow K^+ \eta_c (\rightarrow K_S K^{\pm} \pi^{\mp})$ [2], the mass and the width of the η_c were determined by a 2-dimensional fit of the invariant mass $m(K_S K \pi)$ vs. the angle $\angle (K_S K)$. As the η_c is a pseudoscalar meson, the angular distribution should be flat. However, *P*-wave and *D*-wave components by non-resonant charmless *B* decays turned out to be non-negligible. By adding the angle into the fit, interference with the background is taken into account. The mass was determined as $m=2985.4\pm1.5^{+0.2}_{-2.0}$ MeV. The measured width in listed in Tab. 1, in comparison with other recent measurements.

The analysis was repeated for the η'_c . The measurement of the width of the η'_c is of high importance, as due to the vicinity to the $D^0\overline{D}^0$ threshold, potential model predictions are not reliable. In case of the η'_c the interference with the non-resonant background turned out to even have a higher impact for the fit and thus the determination of the width. The result is $\Gamma=6.6^{+8.4+2.6}_{-5.1-0.9}$ MeV for the fit with interference and $\Gamma=41.1\pm12.0^{+6.4}_{-10.9}$ MeV for a fit without

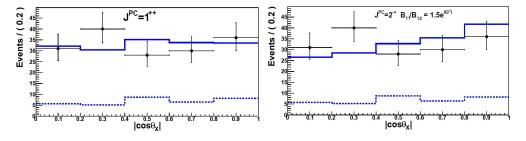
¹soeren.lange@exp2.physik.uni-giessen.de

Γ_{η_c}	Production Mechanism	Reference
$35.1 \pm 3.1^{+1.0}_{-1.6} \text{ MeV}$	B decays	[2] and this paper
30.5±1.0±0.9 MeV	$\psi' \rightarrow \gamma \eta_c$	[3]
28.1±3.2±2.2 MeV	$\gamma\gamma \rightarrow \eta_c$	[4]
31.7±1.2±0.8 MeV	$\gamma\gamma \rightarrow \eta_c$	[5]
$36.3^{+3.7}_{-3.6}\pm4.4$ MeV	B decays	[6]

Table 1: Width measurements of the η_c .


interference (i.e. fit of only the invariant mass). The factor $\simeq 5$ narrower width of the η'_c compared to the η_c can be explained by the wavefunctions of the states. The hadronic decay of both states proceeds by two gluons; three gluons are forbidden by parity. As the width scales with the wavefunction at the origin, i.e. $\Gamma({}^1S_0 \rightarrow gg) = (32\pi\alpha_S^2/m_c^2)|\psi(r=0)|^2$, and the wavefunction for the η'_c has one node (as it is n=1 radial excitation), the width at the origin must be narrower. With the new measurement, the error on the previous world average of the width of the η'_c was improved by factor $\simeq 2$. For additional details of the analysis see [2].

2 Mass and Width of X(3872)


New results for the charmonium-like state X(3872) in the decays $B^+ \rightarrow K^+$ X(3872) and $B^0 \rightarrow K^0(\rightarrow \pi^+\pi^-)$ X(3872) are based upon the complete Belle data set of 711 fb⁻¹ collected at the Y(4S) resonance [7]. For the determination of the mass and the width of the X(3872) in the decay X(3872) $\rightarrow J/\psi\pi^+\pi^-$, a 3-dimensional fit was performed using the three variables beam constraint mass $M_{bc} = \sqrt{(E_{beam}^{cms})^2 - (p_B^{cms})^2}$ (with the energy in the center-of-mass system E_{beam}^{cms} and the momentum of the *B* meson in the center-of-mass system p_B^{cms}), the invariant mass $m(J/\psi\pi^+\pi^-)$ and the energy difference $\Delta E = E_B^{cms} - E_{beam}^{cms}$ (with the energy of the *B* meson in the center-of-mass system E_B^{cms}). In a first step, the fit was performed for the reference channel $\psi' \rightarrow J/\psi\pi^+\pi^-$, and the resolution parameters (i.e. the widths of a core Gaussian and a tail Gaussian) were then fixed for the fit of the X(3872). Fig. 1 shows the data and the fits for the X(3872) (blue line: signal, dashed green line: background) in the projections of the three variables as defined above. The yield is 151±15 events for B^+ decays and 21.0±5.7 events for B^0 decays.

Mass of the X(3872). The mass, as determined by the fit, is listed in Tab. 2 in comparison to other precise measurements. As the X(3872) does not fit into any potential model prediction, it was discussed as a possible S-wave $D^{*0}\overline{D}^0$ molecular state. In this case, the binding energy E_b would be given by the mass difference $m(X)-m(D^{*0})-m(D^0)$. Including the new Belle result, the new world average mass of the X(3872) is $m=3871.67\pm0.17$ MeV. Using the current sum of the masses $m(D^0)+m(D^{*0})=3871.79\pm0.30$ MeV [1], a binding energy of $E_b=-0.12\pm0.35$ MeV can be calculated, which is surprisingly small. As E_b is

inverse proportional to the squared scattering length *a*, and the radius can in first order be approximated by $\langle r \rangle = a/2$ [12], this would indicate a very large radius of the molecular state.

Figure 1: Beam constraint mass M_{bc} (left), invariant mass $m(J/\psi\pi^+\pi^-)$ (center) and ΔE (right) for $B^+ \rightarrow K^+X(3872)(\rightarrow J/\psi\pi^+\pi^-)$.

Figure 2: Distribution of $|\cos(\theta_X)|$ for $B^+ \to K^+X(3872)(\to J/\psi\pi^+\pi^-)$. The blue line shows the fit for $J^{PC}=1^{++}$ (left) and $J^{PC}=2^{-+}$ (bottom). For details see text.

Width of the X(3872). With the 3-dimensional fit, also a new measurement of the width of the X(3872) was performed. Previously the best upper limit was Γ_{X3872} <2.3 MeV (90% C.L) [14]. The 3-dimensional fits are more sensitive to the natural width than the resolution provided by the detector $\langle \sigma \rangle \simeq 4$ MeV because of the constraints which enter by M_{bc} and ΔE . As in case of the mass measurement above, the method of determining the width was validated using the ψ' as reference, providing a result of $\Gamma_{\psi'}^{measured}=0.52\pm0.11$ MeV. As the world average is $\Gamma_{\psi'}^{PDG}=0.304\pm0.009$ MeV, this indicates a bias in our measurement of $\Delta \Gamma = +0.23\pm0.11$ MeV. The procedure for the determination of the upper limit is as follows: for a given fixed width Γ the number of signal events and the number of peaking background events is kept floating in the 3-dim fit, and the likelihood is calculated. Then the 90% likelihood interval is determined by finding $w_{90\%}$ for an integral $\int_{0}^{w_{90\%}} \Gamma d\Gamma = 0.9$. This procedure gives $w_{90\%}=0.95$ MeV, for which the bias has to be added, so that $\Gamma_{X(3872)} <1.2$ MeV at 90% C.L. is the final result. This upper limit is a factor of $\simeq 2$ narrower than the previous upper limit.

Experiment	Mass of X(3872)	
CDF2	3871.61±0.16±0.19 MeV	[8]
BaBar (B^+)	3871.4±0.6±0.1 MeV	[9]
BaBar (B^0)	3868.7±1.5±0.4 MeV	[9]
D0	3871.8±3.1±3.0 MeV	[10]
Belle	3871.84±0.27±0.19 MeV	[7] and this paper
LHCb	3871.96±0.46±0.10 MeV	[11]
New World Average	3871.67±0.17 MeV	

 Table 2: Mass measurements of the X(3872).

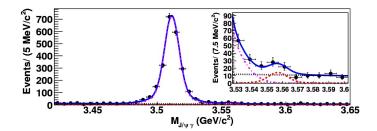
Quantum numbers of the X(3872). If the X(3872) is a conventional charmonium state, there are two likely assignments. On the one hand there is the χ'_{c1} , a ${}^{3}P_{1}$ state with $J^{PC}=1^{++}$. The predicted mass by potential models is m=3953 MeV, thus \simeq 70 MeV higher than the observed X(3872) mass. This would be a n=2 radial excitation, and the quantum numbers are favoured by angular analyses [15] [16]. On the other hand there is the η_{c2} , a ${}^{1}D_{2}$ state with $J^{PC}=2^{-+}$. The predicted mass by potential models is *m*=3837 MeV, thus \simeq 35 MeV lower than the observed X(3872) mass. This would be a n=1 state, and the quantum numbers are favoured by the 3π mass distribution in the decay X(3872) $\rightarrow J/\psi\omega$ [17]. A new angular analysis was carried out with the new Belle data. For this purpose, it was assumed that the decay X(3872) $\rightarrow J/\psi\pi^+\pi^-$ proceeds via X(3872) $\rightarrow J/\psi\rho(\rightarrow\pi^+\pi^-)$ in the kinematic limit, i.e. both particles are at rest in the X(3872) rest frame. Due to $m_{X(3872)} \simeq m_{\rho} + m_{I/\psi}$ this is a valid assumption and it also implies that any higher partial waves can be neglected. For $I^{PC}=1^{++}$, there is only one amplitude with L=0 and S=1, where L and S are the total orbital angular momentum between and the total spin constructed from the ρ and the J/ψ . For $J^{PC}=2^{-+}$, there are two amplitudes with L=1 and S=1 or S=2. These two amplitudes can be mixed with a mixing parameter α , which is a complex number. The angular reference frame follows the definition of Rosner [18]. The angle θ_X is chosen as the angle between the J/ψ and the kaon direction in the X(3872) rest frame. The angular distributions for θ_X for the different quantum numbers is given by:

(1)
$$J^{PC} = 1^{++}, \qquad \frac{d\Gamma}{d\cos\theta_X} \propto const.$$
$$J^{PC} = 2^{-+}, \quad \alpha = 0, \quad \frac{d\Gamma}{d\cos\theta_X} \propto \sin^2\theta_X$$
$$J^{PC} = 2^{-+}, \quad \alpha = 1, \quad \frac{d\Gamma}{d\cos\theta_X} \propto 1 + 3\cos^2\theta_X$$

Two additional angles are defined as follows: the *xy*-plane is spanned by the kaon direction

Angle	$\chi^2/\text{n.d.f.}$	C.L.	$\chi^2/\text{n.d.f.}$	C.L.
	$J^{PC} = 1^{++}$		$J^{PC} = 2^{-+}$	
X	1.76/4	0.78	4.60/4	0.33
θ_{lepton}	0.56/4	0.97	5.24/4	0.26
θ_X	3.82/4	0.51	4.72/4	0.32

Table 3: χ^2 values for the fit of the angular distributions. See text for the definitions of the angles.


and the π^+ and π^- (back-to-back) directions in the X(3872) rest frame. The *x*-axis is chosen to be along the kaon direction. The *z*-axis is constructed perpendicular to the *xy*-plane. The angle χ is chosen between the *x*-axis and the π^+ direction. The angle θ_{μ} is chosen between the μ^+ direction and the *z*-axis. A simultaneous fit for all three angles was performed, and the distributions and the fit results for θ_X are shown in Fig. 2. The χ^2 values are listed in Tab. 3. For the case of $J^{PC}=2^{-+}$, the values in Tab. 3 are given for $\alpha=0.69 \cdot \exp(i23^{\circ})$, which was found in a grid search and which is the only value which gives a confidence level >0.1 for all three angles. Although at the current level of statistical significance, it cannot be distinguished definitely between the two quantum numbers, however $J^{PC}=1^{++}$ seems to be slightly preferable in this analysis. For additional details see [7].

3 χ_{c2} in *B* Meson decays

In the decay $B^+ \rightarrow K^+ \chi_{c1,2}(\rightarrow J/\psi\gamma)$ for the first time a χ_{c2} signal could be observed with a statistical significance of 3.6 σ (Fig. 3). This is the observation of a *J*=2 charmonium state with positive parity in *B* meson decays and thus very interesting for two reasons: on the one hand, due to the $j_q=1/2$ of the two charm quarks forming the charmonium state, and the *J*=0 in the initial state (i.e. $J^P=0^-$ for the *B* meson), *J*=0 and *J*=1 are preferred, and *J*=2 is difficult to be generated. One the other hand, this decay $0^- \rightarrow 0^-2^+$ is, because of the positive parity of the charmonium state, forbidden in naïve factorization [19]. This implies that at least one additional gluon is required to connect the charmonium and the *K*⁺ sides. For additional details of the analysis see [20].

4 Summary

This paper covered three different topics. At first, the width of the η'_c was determined with a factor $\simeq 2$ smaller error compared to the previous world average. Interference with non-resonant background turned out to be important and were taken into account. At second, new results on the X(3872) employed multi-dimensional fits, increasing by constraints the

Figure 3: Invariant mass $m(J/\psi\gamma)$ for the decay $B^+ \rightarrow K^+ \chi_{c1,2}(\rightarrow J/\psi\gamma)$. The zoomed region shows the χ_{c2} signal. See text for details.

resolution to beyond the detector resolution. The new world average mass of the X(3872) is only 120 ± 350 keV below the $D^{*0}\overline{D}^0$ threshold. At third, the production of a $J^P=2^+$ charmonium state was observed in *B* meson decays.

References

- [1] K. Nakamura et al. (Particle Data Group), J. Phys. G37, 075021 (2010)
- [2] Belle Collaboration, arXiv:1105.0978v2 [hep-ex], submitted to Phys. Lett. B
- [3] Bes-III Collaboration, Proc. XIV International Conference on Hadron Spectroscopy (hadron2011), these proceedings
- [4] Belle Collaboration, Eur. Phys. J. C53, 1 (2008)
- [5] BaBar Collaboration, Phys. Rev. **D81**, 052010 (2010)
- [6] BaBar Collaboration, Phys. Rev. D78, 012006 (2008)
- [7] Belle Collaboration, arXiv:1107.0163 [hep-ex], to appear in Phys. Rev. D
- [8] CDF2 Collaboration, Phys. Rev. Lett. 103, 152001 (2009)
- [9] BaBar Collaboration, Phys. Rev. D77, 111101R (2008)
- [10] D0 Collaboration, Phys. Rev. Lett. 93, 162002 (2004)
- [11] LHCb Collaboration, Proc. XIX International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS2011), LHCb-CONF-2011-021
- [12] E. Braaten, M. Lu, Phys. Rev. D76, 094028 (2007)
- [13] T. Barnes, S. Godfrey, E. S. Swanson, Phys. Rev. D72, 054026 (2005)

- [14] Belle Collaboration, Phys. Rev. Lett. 91, 262001 (2003)
- [15] CDF-II Collaboration, Phys. Rev. Lett. 98, 132002 (2007)
- [16] Belle Collaboration, hep-ex/0505037
- [17] The BaBar Collaboration, Phys. Rev. D82, 011101 (2010)
- [18] J. L. Rosner, Phys. Rev. D70, 092023 (2004)
- [19] M. Bauer, B. Stech, M. Wirbel, Z. Phys. C34, 103 (1987)
- [20] Belle Collaboration, Phys. Rev. Lett. 107, 091803 (2011)