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1 Introduction

Many interesting indications on the gluonic sector of Quantum Chromodynamics can
be drawn from lattice studies on the high temperature transition of pure non-abelian
gauge theories SU(Nc), where all difficulties related to the presence of fermions and
to the details of the chiral simmetry breaking are absent. In addition, recent lattice
simulations on SU(Nc) gauge theories at finite temperature T and for large number
of colors Nc [1, 2] are available, which allows for a specific analysis of the role of Nc

at the transition.
We shall revise the SU(Nc), Nc = 3, 4, 6, lattice data on pure gauge theories at

finite temperature by means of a quasi-particle approach, with particular attention
to the dimensionless interaction measure ∆, defined in terms of the energy density ǫ,
the pressure p and the temperature T as ∆(T ) = (ǫ − 3p)/T 4, and its scaling with
Nc, and also with particular attention to the role of the quasi-particle effective mass,
the screening mass and the gluon condensate [3, 4].

We shall focus on the temperature range which goes from the critical deconfine-
ment temperature Tc up to about 4 Tc. In fact, the region below Tc is dominated by
the gluon condensate and glueball degrees of freedom, while only for extremely large
values of T , T >> Tc, perturbation theory starts to give a reliable description of the
lattice data. The region here considered, between Tc and 4 Tc, is very interesting
because, due to the transition, new degrees of freedom emerge. This is particularly
evident in the interaction measure ∆, which shows a steep increase just above Tc,
followed by a smooth decrease toward zero, which is reached only at very large tem-
peratures where the perturbative, almost non-interacting, massless gluon degrees of
freedom are relevant. Then, we shall mainly concentrate on the interaction measure ∆
and on a possible description of this temperature region in terms of non-pertubative
massive quasi-particle degrees of freedom, with a temperature dependent mass which
is supposed to include all the interaction effects.

1Speaker.
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Figure 1: Interaction measure lattice data above 1.05 Tc.
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Figure 2: Interaction measure lattice data between Tc and 1.05 Tc.

2 The interaction measure ∆(T )

Before considering the specific quasi-particle model, it is interesting to point out some
scaling properties of the interaction mesure ∆(T ) which is directly related to the trace
of energy-momentum tensor

∆(T ) =
(ǫ − 3p)

T 4
=

Θµ
µ(T )

T 4
(1)

where the zero temperature part ( Θ
µ

ν ) of the full energy-momentum tensor Tµ
ν (T )

has been removed :
Θµ

ν(T ) = Tµ
ν (T ) − Θ

µ

ν (2)

and, accordingly to the normalization in Eq. (2), the energy density ǫ and the pressure
p in Eq. (1) vanish at T = 0 [5, 6].

As already noticed, the lattice data for ∆ show a very large peak around 1.05 Tc.
The data above the peak are plotted in Figure 1 for Nc = 3, 4, 6, with each curve
rescaled by N2

c − 1, showing that the scaling of ∆ with N2

c − 1 in this temperature
region is almost exact [1, 2]. For lower temperatures, namely between Tc and 1.05 Tc,
such a scaling is slightly violated, as observed in Figure 2. This clearly indicates a

2



rearrangement of the degrees of freedom because at large temperatures each different
type of gluon contributes to the energy density and pressure, while below Tc color
is confined and proportionality with the gluon degrees of freedom, N2

c − 1, is lost.
Figure 2 shows the transition between these two regimes.

It must be remarked at this point that the interaction measure shows another
approximate scaling [7], namely T 2 ·∆ is almost T independent in the region between
Tc and 4 Tc, which, even if accidental i.e. not corresponding to a specific physical
mechanism, is nevertheless interesting because not only simple perturbative approxi-
mations, but also hard thermal loop resummations [8] fail to reproduce it [3]. This,
again, indicates that a non-perturbative description in the temperature region just
above Tc is required.

Before considering any specific model, it is important to recall the role of the gluon
condensate 〈G2〉, which is known to provide a contribution to Θµ

µ(T ) and therefore
to ∆(T ) [5]. It has been evaluated by lattice simulations at finite temperature, in
quenched and unquenched QCD [9] and it turns out that for T < Tc the gluon
condensate is almost T independent and is the sum of two equal contributions, namely
the chromo-electric and chromo-magnetic part. For T > Tc, in correspondence of the
deconfinement transition, the chromo-electric part quickly decreases to zero while
the chromo-magnetic part remains constant in the temperature interval considered
(Tc < T < 4 Tc ).

Therefore, between Tc and 4 Tc the gluon condensate is essentially T independent
and it is about one half of its value at T = 0. The corresponding contribution to the
interaction measure is 〈G2〉 /T 4 which is largely suppressed at large temperature and,
in addition, the T−4 behavior is not in agreement with the mentioned temperature
dependence of the interaction measure ( T 2 · ∆ ∼ constant). This indicates that the
gluon condensate alone cannot explain the observed properties of ∆.

About the dependence of the gluon condensate on Nc, we recall that

G2 ≡ −β(g)

2g
Ga

µνGµνa =
11Ncg

2

96π2
Ga

µνGµνa (3)

where, in the right hand side, we have inserted the β-function at leading order in the
coupling constant g. In the t’Hooft scaling regime, which corresponds to the limit of
large Nc and small coupling g with the product g2Nc fixed, we expect the right hand
side of Eq. (3) to be proportional to N2

c − 1 due to the sum over the SU(Nc) index
a. However, as noticed before in Figure 2, ∆(Tc) shows a deviation from the simple
N2

c − 1 scaling.
Therefore the gluon condensate does not show the same scaling properties of the

interaction measure, so that the dominant component of ∆ must have a different
origin. Moreover, the quantitative value of the gluon condensate is estimated on the
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basis of the zero temperature phenomenological input [10]

〈

αs

π
Ga

µνGµνa

〉

≃ 0.012 ± 0.006 GeV 4 (4)

and this, as it will be clear below, only gives a very small contribution , when compared
to the numerical values of ∆ computed by lattice simulations.

3 Quasi-particle approach

The observed approximate scaling of ∆ with N2

c − 1 for Nc ≥ 3, naturally suggests a
quasi-particle behavior of the effective degrees of freedom, with the typical degeneracy,
N2

c − 1, of the gluons and with an effective, temperature dependent mass that turns
out to be divergent or, at least, very large at Tc [11, 12, 13, 14].

The partition function for the very simple case of free quasi-particles in a volume
V , at temperature T and with temperature dependent mass m(T ) is

lnZ(T, V ) = 2V (N2

c − 1)
∫

d3k

(2π)3
ln

[

fT (k) exp
(

√

~k2 + m2(T )/T
)]

(5)

where fT (k) is the distribution

fT (k) =
[

exp
(

√

~k2 + m2(T )/T
)

− 1
]

−1

(6)

and all thermodynamical quantities are obtained by deriving Eq. (5). For our pur-
pose, the energy density ǫ, the pressure p, the entropy density s are respectively,
ǫ = (T 2/V ) ∂ lnZ/∂T , p = T ∂ lnZ/∂V and s = (ǫ + p)/T . The interaction
measure ∆ is directly obtained from ǫ and p as ∆ = (ǫ − 3p)/T 4 .

Obviously the temperature dependence of the mass must be taken into account
when differentiating with respect to T . Note also that the additional effect of a
temperature independent bag pressure (or gluon condensate) B corresponds to the
changes p → p − B, and ǫ → ǫ + B, with no change in the entropy density s.

The factor 2 in front of the color multiplicity factor N2

c −1 in Eq. (5) corresponds
to the number of polarization degrees of freedom. In general, the representations
of the Poincaré group of massive and massless particles in this case would suggest
that our massive physical constituents carry three, rather than two, spin degrees of
freedom. However, this is valid for free particles and, in fact, the comparison of
all predicted thermodynamic quantities with the observed high temperature lattice
results clearly shows much better agreement when only two polarization states are
considered, as already noticed in [11].

In particular all lattice QCD results hint at an asymptotic limit of the ǫ/T 4 con-
sistent with 2 (N2

c − 1) degrees of freedom. In other words, a simple shift to massive
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gluons with three spin degrees of freedom cannot satisfactorily explain the effects of
the interaction apparently still present in the gluon gas above the critical temperature.

It is well known that gauge symmetry forbids a mass term in the lagrangian
for the elementary gluons and, in order to preserve the symmetry, one can expect to
observe the generation of mass through a dynamical mechanism, such as the Schwinger
mechanism [15] in which the mass comes from the appearance of a pole in the self-
energy. In fact this effect has been explicitly pointed out and it has been argued that
the longitudinal polarization component could be cancelled by the scalar massless
pole [16, 17, 18].

On the other hand, in the modified Hard Thermal Loop perturbation theory
approach, where each order already includes some aspects of gluon dressing and which
leads to a rather rapid convergence of the expansion, the contribution of longitudinal
gluons vanishes in the limit g → 0, and, in particular, one also obtains the right
number of degrees of freedom for the Stefan-Boltzmann form [19].

Moreover, from a comparison of the lattice glueball spectrum with the predictions
of constituent models it has recently been argued [20] that massive gluons should in
fact be transversely polarized, since two massless gluons cannot combine to form a
longitudinally polarized massive gluon [21]. According to these indications we limit
ourselves to consider just two polarization degrees of freedom for the effective quasi-
particle in Eq. (5).

Let us now turn to the most important ingredient in our approach, that is the
effective temperature dependent mass m(T ) which contains the non-perturbative dy-
namics. Previous analyses [11, 12, 13] show that m(T ) strongly increases near Tc

and a qualitative explanation of this aspect, which we shall recall below, has been
suggested in [3, 4]. To illustrate this point, one describes the mass of the quasi-gluon
in the strongly coupled region as the energy contained in a region of volume Vcor

whose characteristic size is given by the correlation range ξ, so that in three spatial
dimensions one gets (η is the anomalous dimension and t is the reduced temperature
t = T/Tc):

m(t) ≃ ǫ(t)Vcor = ǫ(t)
∫

dr r2
exp[−r/ξ(t)]

r1−η
(7)

where it is understood that all dimensionful quantities are expressed in units of the
critical temperature. In the case of a second order phase transition, the correlation
length shows the power law divergence ξ(t) = (t− 1)−ν at t = 1, which indicates that
the associated fluctuations have an infinite range at criticality, and the corresponding
component of the energy density vanishes as ǫ(t) ≃ (t− 1)1−α where α is the specific
heat critical exponent. In this case Eq. (7) predicts a power law divergence of the
mass m(1).

For the gauge groups SU(Nc), with Nc = 3, 4, 6 here considered, a first order
phase transition and consequently a finite correlation length, is expected at Tc and
power law behavior at criticality is modified by the finite scale ξ. However, in the case
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of weak first order transitions one should expect a behavior of the thermodynamical
quantities at Tc not totally different from that observed in second order transitions,
and therefore a finite but large correlation length and a correspondingly large m(1).
In particular, as discussed in [22], the thermodynamical quantities approach Tc (from
larger values of the temperature t > 1) as in a second order phase transition with the
critical temperature shifted to a lower value: 1 → δ with 0 ∼ (1 − δ) << 1.

According to this suggestion, and recalling that for t >> 1 the mass is expected
to grow linearly with the temperature, which is the only dimensionful scale available,
we parametrize the mass as[4] :

m(t) =
a

(t − δ)c
+ bt (8)

where a, b, c, δ are constant parameters.
The quasi-particle mass m(t) should not be confused with the screening mass

mD(t). The relation between m(t) and mD(t), has been clarified in [11] where it is
shown that

m2

D =
g2Nc

π2T

∫

∞

0

dk k2f 2

T (k) exp

√

~k2 + m2(t)

T
(9)

and, following [11], the leading order QCD coupling g2 is evaluated at the average,
M2, over the squared quasi-particle momenta, i.e.

M2(T ) =
4

3

∫

dk k4 fT (k)
∫

dk k2 fT (k)
(10)

In the next Section we display m(t) and mD(t) which show totally different behaviors
when approaching Tc.
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Figure 3: The interaction measure as obtained from a fit to the SU(3, 4, 6) lattice
data with c = 0.5 fixed.
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Figure 4: The same fit as in Figure 3 but with c treated as a free parameter.

4 Analysis of the lattice data

Now we check the simple model outlined in the previous Section against the lattice
data for SU(3, 4, 6) [2] . These theories undergo a weakly first order transition and
we shall resort to the large but finite mass in Eq. (8) for computing the various
thermodynamical quantities.

As a first check that our choice of describing the weakly first order phase transition
by means of a quasi-particle model is a reasonable assumption, we verify that the
mean field behavior produces a good fit to the data by fixing the exponent c in Eq.
(8) to its mean field value: c = 0.5. The results are plotted in Figure 3 and we get
δ = 0.94, 0.94, 0.89 and χ2/dof = 2.6, 7.7, 6.5 respectively for Nc = 3, 4, 6. As
expected, δ turns out to be very close to 1.

The full analysis is then performed by releasing the constraint on the param-
eter c which now turns out to slightly decrease from the mean field value: c =
0.46, 0.35, 0.33 respectively for Nc = 3, 4, 6 and the other parameters are collected
in Table 1 (see values in brackets). As expected the χ2/dof is smaller than the case
with c = 0.5 and the parameter δ is very close to one for all values of Nc.

The corresponding curves are shown in Figure 4 where the details at large t are
well visible. In order to have a closer look at the region just above the transition, we

Nc m(1) δ χ2/dof
3 (6.6) 7.7 (0.95) 0.95 (2.0) 2.1
4 (7.4) 7.5 (0.98) 0.96 (0.8) 1.1
6 (4.4) 2.6 (0.97) 0.73 (3.1) 4.9

Table 1: Some parameters from the fit to the lattice data. The values on the left
within brackets correspond to the simple quasi-particle model, those on the right are
obtained by including the gluon condensate.
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Figure 5: Enlargement of Figure 4 in the region t ≃ 1, with the additional insertion
of three black dotted curves obtained by including in the fit the gluon condensate
contribution to ∆.
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Figure 6: The screening mass mD compared with m(t) as obtained from the fit to the
lattice data.

have enlarged the figure around t ≃ 1 and the plot is displayed in Figure 5, where we
have also included three black dotted curves which will be discussed afterward. Even
very close to t = 1 the agreement with the data is evident.

The mass as a function of the temperature is plotted in Figure 6. We note that even
if we have not forced any specific dependence of the mass on the coupling g and on Nc,
the resulting masses manifest an independence of m(t) on the the SU(Nc) gauge group
for temperature above the peak in the interaction measure. This could be expected
if one considers the parametric dependence of the mass in a perturbative approach,
m2

g ≃ g2NcT
2, along with the t’Hooft scaling of the coupling, g2 ≃ 1/Nc. Moreover,

the comparison between the gluon effective mass m(t) and the Debye screeening mass
mD(t) according to Eqs. (9,10), is also displayed in Figure 6.

As a further check of our model on other thermodynamical quantities, respectively
in Figures 7 and 8 we plot the pressure p and the speed of sound, defined as c2

s = ∂p/∂ǫ,
which correctly tends to the Stefan-Boltzmann limit c2

s = 1/3 at large temperatures.
Now we are able to see how, in accordance to the previous Section, the inclusion of
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Figure 7: Full fit to the SU(3, 4, 6) pressure lattice data.
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Figure 8: The speed of sound as obtained from the fit to the lattice data.

the gluon condensate can affect our results. As already anticipated the gluon conden-
sate does not have the correct dependence on the temperature T and the number of
colors Nc and, in addition, its global contribution to ∆, due to the phenomenological
value in Eq. (4) is expected to be small.

In fact, it is straightforward to add this contribution and observe the induced
changes in the parameters of our quasi-particle model. Results are again shown in
Table 1 (values on the right - no brackets) and the corresponding plots are reported
in Figure 5 as black dotted curves. We do not show the full curves at larger t as they
become identical to the old ones because the gluon condensate is suppressed at larger
t by the factor t−4 and therefore it becomes irrelevant. The small changes displayed
in Figure 5 seem to worsen the agreement close to t = 1 and this is confirmed by the
increase of the χ2/dof in Table 1. The parameters δ and m(1) show a sizeable change
only in the case Nc = 6.

Finally we note that, when the gluon condensate is included and going from Nc = 6
to Nc = 3, Table 1 shows a slight increasing trend of the masses m(1). This is, at
least, in line with the possible occurrence of a power law diverging mass at Tc in the
case of the SU(2) second order phase transition, as suggested after Eq. (7).
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5 Conclusions

Our results show that a quasi-particle approach, where the effective mass is related
to the features of the deconfinement transition, gives a very good description of the
interaction measure and of the thermodynamical quantities for the first order phase
transition occurring in SU(3, 4, 6).

We find that the scaling of the interaction measure with (N2

c − 1) is observed for
T > 1.1 Tc but is violated near Tc. Accordingly, above 1.1 Tc the mass behavior is
independent of Nc in agreement with a perturbative parametric dependence on g2 Nc

and the 1/
√

Nc t’Hooft scaling of the coupling which, on the other hand, is broken
very close to Tc. In all cases Nc = 3, 4, 6, the mass at the critical temperature is large
but finite and δ is slightly smaller than one. This is clearly in agreement with the
first order nature of the deconfinement transition for Nc ≥ 3.

In addition the gluon condensate, which is essential to understand lattice data
below Tc where the simple glueball gas contribution is highly insufficient [23], in the
region Tc ≤ T ≤ 1.1 Tc gives only a very small correction and is practically irrelevant
at higher temperatures.

An important check to our model would come from the extension of the analysis
to the SU(2) theory because in this case a second order phase transition is expected,
with a corresponding divergent effective mass at the critical point and δ = 1. Un-
fortunately, to our knowledge, no recent lattice analysis of the SU(2) case with an
accurate extrapolation to the continuum, thus eliminating finite lattice size effects
[24], is presently available.
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