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The holographic approach to double diffractive Higgs production is presented for the AdS gravi-

ton/Pomeron of Brower, Polchinski, Strassler and Tan [1]. The goal is to provide a simple framework

from the dual strong coupling point of view, which nonetheless is capable of providing phenomenolog-

ically compelling estimates of the cross sections. This article is the first step in defining the building

block in anticipation of experimental observations at the LHC. As in the traditional weak coupling

approach in order to constrain the phenomenological parameters, we anticipate the holographic pa-

rameterizations must subsequently be tested and calibrated through factorization for a self-consistent

description of other diffractive process such as total cross sections, deep inelastic scattering and heavy

quark production in the central region.

1 Introduction

A promising production mechanism for Higgs meson at the LHC involves the forward proton-proton

scattering pp → pHp. The protons scatter through very small angles with a large rapidity gaps separating

the Higgs in the central region. The Higgs subsequently decays into large transverse momentum fragments.

Although this represents a small fraction of the total cross section, the exclusive channel should provide

an exceptional signal to background discrimination by constraining the Higgs mass to both the energy

of decay fragments and the energy lost to the forward protons [2]. Relaxing the kinematics to allow for

inclusive double diffraction may also be useful, where one or both of the nucleon are diffractively excited.

While double diffraction is unlikely to be a discovery channel, it may play a useful role in determine

properties of the Higgs after discovery.

Current phenomenological estimates of the diffractive Higgs production cross section have generally

followed two approaches: perturbative (weak coupling) vs confining (strong coupling), or equivalently, in

the Regge literature, often referred to as the “hard Pomeron” vs“soft Pomeron” methods. The Regge

approach to high energy scattering, although well motivated phenomenologically, has suffered in the past

by the lack of a precise theoretical underpinning. The advent of AdS/CFT has dramatically changed the
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situation. In a holographic approach, the Pomeron is a well-defined concept and it can be identified as

the “AdS graviton” in the strong coupling [1], or, simply the BPST Pomeron. In this talk, we briefly

review the general properties of the BPST Pomeron and then show how it can be used to describe

double-diffractive production of Higgs.

2 Holographic Model for Diffractive Higgs Production

The formulation of AdS/CFT for high energy diffractive collision has already a rather extensive literature

to draw on [3, 4, 5]. “Factorization in AdS” has emerged as a universal feature, applicable to scattering

involving both particles and currents. For instance, for elastic scattering, the amplitude can be represented

schematically in a factorizable form,

A(s, t) = Φ13 ∗ K̃P ∗ Φ24 . (1)

where Φ13 and Φ24 represented two elastic vertex couplings, and K̃P is an universal Pomeron kernel 1,

with a characteristic power behavior at large s >> |t|,

K̃P ∼ sj0 , (2)

schematically represented by Fig. 1a. This “Pomeron intercept”, j0, lies in the range 1 < j0 < 2

and is a function of the ’t Hooft coupling, g2Nc. The convolution in (1), denoted by the ∗-operation,

involves an integration over the AdS location in the bulk. (For more details, see the talk by M. Djurić

at this Workshop.) This formalism has also been applied to give a reasonable account of the small-x

contribution to deep inelastic scattering [7]. In moving from elastic to DIS, one simply replaces Φ13 in

(1) by appropriate product of propagators for external currents [6, 7].
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Figure 1: (a) Kinematics for single-Regge limit for 2-to-2 amplitudes, (b) Double-Regge kinematics for

2-to-3 amplitudes. (c) Cylinder Diagram for large Nc Higgs Production.

A holographic treatment of Higgs production amounts to a generalization of our previous AdS treat-

ment for 2-to-2 amplitudes to one for 2-to-3 amplitudes, e.g., from Fig. 1a to Fig. 1b. A more refined

analysis for Higgs production requires a careful treatment for that depicted in Fig. 1c. A particularly use-

ful paper for the diffractive Higgs analysis is the prior work by Herzog, Paik, Strassler and Thompson [8]

1Unlike the case of a graviton exchange in AdS, this Pomeron kernel contains both real and imaginary parts.
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on holographic double diffractive scattering. In this analysis, one generalizes (1) to 2-to-3 amplitude

where

A(s, s1, s2, t1, t2) = Φ13 ∗ K̃P ∗ VH ∗ K̃P ∗ Φ24 , (3)

schematically represented by Fig. 1b. However, a new aspect, not addressed in [8], is the issue of scale

invariance breaking. A proper accounting for a non-vanishing gluon condensate 〈F 2〉 turns out to be a

crucial ingredient in understanding the strength of diffractive Higgs production.

Let us first list the assumptions and the corresponding building blocks required to develop a model

for holographic description of diffractive Higgs production. The basic theoretical steps necessary in order

to arrive at (1) and (3) are:

(a) Diffractive Scattering and QCD at Large Nc Limit: in this limit, there is a more precise definition

of the “bare Pomeron”. In leading order of the 1/Nc expansion at fixed ’t Hooft coupling λ = g2Nc,

diffraction is given peturbatively by the exchange of a network of gluons with the topology of a cylinder,

corresponding in a confining theory to the t-channel exchange of a closed string for glueball states. Such

a state can be identified with the Pomeron.

(b) From Weak to Strong Coupling: Prior to AdS/CFT, property of the Pomeron has been explored

mostly from a perturbative approach. The advent of the AdS/CFT correspondence has provided a firmer

foundation from which a non-perturbative treatment can now be carried out. For instance, for elastic

scattering, the 2-to-2 amplitude can be represented by the exchange of a single graviton, schematically

given in a factorizable form,

A(s, t) = Φ13 ∗ K̃G ∗ Φ24 . (4)

where Φ13 and Φ24 represented two elastic vertex couplings to the graviton and K̃G is dominated by

the “(++,−−)” component of the graviton propagator [3]. Since this corresponds to a spin-2 exchange,

the dominant graviton kernel K̃G grows with a integral power, i.e., at fixed t, as s2. Similarly, double

diffractive Higgs production will be dominated by a double-graviton exchange diagram, leading to a

similar factorizable expression for the production amplitude

A(s, s1, s2, t1, t2) = Φ13 ∗ K̃G ∗ VH ∗ K̃G ∗ Φ24 . (5)

In comparing with (4), a new Higgs production vertex VH is required. The central issue in a holographic

description for diffractive Higgs production is the specification of this new vertex VH .

(d) Confinement: However, above discussion is purely formal since a CFT has no scale and one needs

to be more precise in defining the Regge limit. First, in order to provide a particle interpretation, the

basic framework is a holographic approximation to the dual QCD with confinement deformation. With

confinement deformation, the AdS is effectively cutoff. Because of the “cavity effect”, both dilaton and

the transverse-traceless metric become massive, leading to an infinite set of massive scalar and tensor

glueballs respectively. In particular, each glueball state can be described by a normalizable wave function

Φ(z) in AdS. The weight factor Φij in the respective factorized representation for the elastic and Higgs

amplitudes, (4) and (5), is given by Φij(z) = e−2A(z)Φi(z)Φj(z). In contrast, for amplitudes involving

external currents, e.g., for DIS [6, 7], non-normalizable wave-functions will be used.
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(e) Correction to Strong Coupling in 1/
√

λ: It has been shown in [1], for N = 4 SUSY YM, the

leading strong coupling Pomeron [1, 3, 4] is at

j0 = 2 − 2/
√

g2Nc . (6)

which is “lowered” from J = 2 as one decreases λ. In a realistic holographic approach to high energy

scattering, one must work at λ large but finite in order to account for the Pomeron intercept of the

order j0 ≃ 1.3. After taking into account O(1/
√

λ) correction to the Graviton kernel, one arrives at

(1) and (3) for elastic and diffractive Higgs production respectively. Here the Pomeron kernel, K̃P , has

hard components due to near conformality in the UV and soft Regge behavior in the IR. It is interesting

to compare the weak and strong coupling (conformal) Pomeron by plotting the intercept of the leading

sigularity in the J−plane. This is to be compared with the weak coupling BFKL intercept to second

order, as shown in Fig. 2. The phenomenological estimate for QCD gives an intercept of about j0 ≃ 1.3,

suggesting that the physics of diffractive scattering is roughly in the cross-over region between strong

and weak coupling.
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Figure 2: In N = 4 Yang-Mills theory, the weak- and strong-coupling calculations of the position j0 of

the leading singularity for t ≤ 0, as a function of αN = g2Nc/4π. Shown are the leading-order BFKL

calculation (dotted), the next-to-leading-order calculation (dashed), and the strong-coupling calculation

of this paper (solid). Note the latter two can be reasonably interpolated.

(f) Higgs Production From Weak to Strong Coupling: In a perturbative approach, often dubbed as

“hard Pomeron”, Higgs production can be viewed as gluon fusion in the central rapidity region. A Higgs

can be produced at central rapidity by the double Regge Higgs vertex through a heavy quark loop which

in lowest order is a simple gluon fusion process, dominant for large parton x for the colliding gluons. A

more elaborate picture emerges as one tries to go to the region of the softer (wee gluons) building up

double Regge regime 2 In the large Nc there are no quark loop in the bulk of AdS space and since the

Higgs in the Standard Model only couples to quark via the Yukawa interactions there appears to be a

2In addition to the Pomeron exchange contribution in these models must subsequently be reduced by large Sudakov

correction at the Higgs vertex and by so called survival probability estimates for soft gluon emission, again reflecting the

view that double diffraction Higgs production is intrinsically non-perturbative.
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problem with strong coupling Higgs production in leading 1/Nc. Fortunately the solution to this is to

follow the standard procedure in Higgs phenomenology, which is to integrate out the quark field replacing

the Higgs coupling to the gauge operator Tr[F 2].

Consider the Higgs coupling to quarks via a Yukawa coupling, and, for simplicity we will assume is

dominated by the top quark. We will be more explicit in the next Section, and simply note here that,

after taking advantage of the scale separations between the QCD scale, i.e., the Higgs mass and the top

quark mass, Λqcd ≪ mH ≪ 2mt, heavy quark decoupling allows one to replace the Yukawa coupling by

an effective interaction,

L =
αsg

24πMW
F a

µνF aµνφH (7)

by evaluating the two gluon Higgs triangle graph in leading order O(MH/mt). Now the AdS/CFT

dictionary simply requires that this be the source in the UV of the AdS dilaton field. It follows, effectively,

for Higgs production, we are required to work with a five-point amplitudes, one of the external leg involves

a scalar dilaton current coupling to Tr[F 2]. For diffractive Higgs production, in the supergravity limit,

the Higgs vertex VH is given by a two-graviton-dilaton coupling, Fig. 1c.

(g) Conformal Symmetry Breaking: We now must pause to realize that in any conformal theory the

is no dimensional parameter to allow for such a dimensionful two-graviton-dilaton coupling, M2φhµνhµν ,

emerging in an expansion of the AdS gravity action if scale invariance is maintained. However since QCD

is not a conformal theory this is just one of many reasons to introduce conformal symmetry breaking.

Many attempts have been made to suplement this phenomenological Lagrangian with other fields such

as the gauge fields for the light quark Goldstone modes to provide a better holographic dual for QCD. In

principle enen at leading order of large Nc we should eventually require an infinite number of (higher spin)

field in the bulk representation to correspond the yet undiscovered 2-d sigma model for the world-sheet

string theory for QCD. Fortunately for the phenomenological level at high energy, these details are non-

essential. To model an effective QCD background we will for the most part introduce two modifications

of the pure AdS background: (1) an IR hardwall cut-off beyond z = 1/Λqcd to give confinement and

linear static quark potential at large distances and (2) a slow deformation in the UV (z → 0) to model

the logarithmic running for asymptotic freedom. Both break conformal invariance, which as we will argue

is required to couple the two gravitons to the dilaton and produce a Higgs in the central rapidity region.

After taking into account of finite λ correction, the leading order Higgs production diagram at large

Nc can be schematically represented in Fig. 1c, with each of the left- and right-cylinder representing a

BPST Pomeron. It should be pointed out, just as in the case of elastic scattering, it is necessary to

consider higher order corrections, e.g., eikonal corrections. We will not do it here, but will address this

issue in the conclusion section. In what follows, we shall focus on the Pomeron-Pomeron fusion vertex in

the strong coupling limit.

Finally it should be noted that one critical missing ingredient of these ad hoc conformal breaking

deformation of the AdS geometry in the UV and IR is the fact the spontaneous breaking of pure Yang

Mills ( and presumable QCD at large Nc), via “dimensional transmutation” eliminates the coupling, λ,

as a free parameter. It is fixed via the beta function in terms of a single integration constant (sometime

called Λqcd ) which provides the only mass scale. Thus the logarithmic scale violation in the UV are tied
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to the same parameter giving confinement in the IR. All holographic modes of QCD to date introduce

two mass scales and thus neglect this constraint. The solution to this problem also presumably awaits

the determination of the unique string theory for large Nc QCD.

3 Pomeron-Pomeron fusion Vertex

We are now in a position to focus on the issue of double diffractive Higgs production from the perspective

of String/Gauge duality, i.e., the Higgs vertex, VH . It is important to stress that our general discussion in

moving from single-Pomeron exchange processes, (1), to double-Pomeron exchange, (3), applies equally

well for both diffractive glueball production and for Higgs production. The difference lies in how to

treat the new central vertex. For the production of a glueball, the vertex will be proportional to a

normalizable AdS wave-function. There will also be an overall factor controlling the strength of coupling

to the external states, e.g., the Pomeron-Pomeron-glueball couplings. For Higgs production, on the other

hand, the central vertex, VH , involves a non-normalizable bulk-to-boundary propagator, appropriate for

a scalar external current.This in turns leads to coupling to a Higgs scalar. The difference between these

two cases parallels the situation for four-point amplitudes in moving from proton-proton (p-p) elastic

scattering to electron-proton deep-inelastic scattering (e-p DIS). In moving from p-p to DIS, one simply

replaces one of the two pairs of normalizable proton wave-functions with a pair of non-normalizable

counterparts appropriate for conserved external vector currents.

A Higgs scalar in the standard model couples exclusively to the quarks via Yukawa coupling, which

for simplicity we will assume is dominated by the top quark, with

L = − g

2MW
mt t̄(x)t(x)φH (x). (8)

Taking advantage of the scale separations between the QCD scale, the Higgs mass and the top quark

mass, Λqcd ≪ mH ≪ 2mt, heavy quark decoupling allows one to replace the Yukawa coupling by direct

coupling of Higgs to gluons, which is treated as an external source in the AdS dictionary. Consequently

VH , in a coordinate representation, is replaced by the vertex for two AdS Pomerons fusing at (x′

1⊥, z′1)

and (x′

2⊥, z′2) and propagating this disturbance to the t̄(x)t(x) scalar current at the boundary of AdS.

The double diffractive Higgs vertex VH can then be obtained in a two-step process.

First, since the Yukawa Higgs quark coupling is proportional to the quark mass, it is dominated by

the top quark. Assuming mH ≪ mt, this can be replaced by an effective interaction, (7), by evaluating

the two gluon Higgs triangle graph in leading order O(MH/mt). Second, using the AdS/CFT dictionary,

the external source for F a
µνF a

µν(x) is placed at the AdS boundary (z0 → 0) connecting to the Pomeron

fusion vertex in the interior of AdS3 at bH = (x′
H , z′H), by a scalar bulk-to-boundary propagator, K(x′

H −
xH , z′H , z0).

We are finally in the position to put all the pieces together. Although we eventually want to go

to a coordinate representation in order to perform eikonal unitarization, certain simplification can be

achieved more easily in working with the momentum representation. The Higgs production amplitude,
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schematically given by (3), can then be written explicitly as

A(s, s1, s2, t1, t2) ≃
∫

dz1dzdz2

√−g1

√−g
√−g2 Φ13(z1)

× K̃P (s1, t1, z1, z) VH(q2, z) K̃P (s2, t2, z, z2) Φ24(z2) . (9)

where q2 = −m2
H . For this production vertex, we will keep it simple by expressing it as

VH(q2, z) = VPPφK(q2, z)L(q2) . (10)

where K(q2, z) is the conventionally normalized bulk to boundary propagator, VPPφ serves as an overall

coupling from two-Pomeron to F 2, and L is the conversion factor from F 2 to Higgs, i.e., L(−m2
H) ≃

αsg
24πMW

. By treating the central vertex VPPφ as a constant, which follows from the super-gravity limit,

we have ignored possible additional dependence on κ, as well as that on t1 and t2. This approximation

gives an explicit factorizable form for Higgs production.

4 Strategy for Phenomenological Estimates

While we intend to lay in this article the formal framework for the holographic diffractive Higgs production

approach, it is useful to outline the phenomenological approach we plan to pursue to confront experimental

data. There should be a strong warning however that details will necessarily change as we discover which

parameterization are critical to a global analysis of data. Our current version for the holographic Higgs

amplitude involves 3 parameters: (1) the IR cut-off determined by the glueball mass, (2) the leading

singularity in the J-plane determined 3 by the ’t Hooft parameter g2Nc and (3) the strength of the

central vertex parameterized by the string coupling or Planck mass. A stretegy must be provided in

fixing these parameters.

As a first step in this direction, we ask how the central vertex, VH , or equivalently, VPPφ, via (10),

can be normalized, following the approach of Kharzeev and Levin [2] based on the analysis of trace

anomaly. We also show how one can in principle use the elastic scattering to normalize the bare BPST

Pomerom coupling to external protons and the ’t Hooft coupling g2Nc. As in the case of elastic scattering,

it is pedagogically reasonable to begin by first treating the simplest case of double-Pomeron exchange

for Higgs production, i.e., without absorptive correction. We discuss how phenomenolgically reasonable

simplifications can be made. This is followed by treating eikonal corrections in the next section, which

provides a means of estimating for the all-important survival probability.

4.1 Continuation to Tensor Glueball Pole and On-Shell Higgs Coupling:

Confinement deformation in AdS will lead to glueball states, e.g., the lowest tensor glueball state lying

on the leading Pomeron trajectory [?]. There will also be scalar glueballs associated with the dilaton.

3In a true dual to QCD, there is no independent parameter for the strong coupling, because of “dimensional transmuta-

tion”, which fixes all dimensionful quantities relative to the a single mass scale Λqcd, through the running coupling constant.

For instance, the glueball mass in units of Λqcd is fixed and computed in lattice computations.
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With scalar invariance broken, this will also lead to non-vanishing couplings between a pair of tensor

glueballs and scalar glueballs. In terms of the language of Witten diagram, corresponds to a non-vanishing

graviton-graviton-dilaton coupling in the bulk, which in turn leads to VH 6= 0.

Consider first the elastic amplitude. With confinement, each Pomeron kernel will contain a tensor

glueball pole when t goes on-shell. Indeed, the propagator for our Pomeron kernel can be expressed as a

discrete sum over pole contributions. That is, when t ≃ m2
0, where m0 is the mass of the lightest tensor

glueball, which lies on the leading Pomeron trajectory. In this limit, the elastic amplitude then takes on

the expected pole-dominated form,

A(s, t) ≃ g13
s2

m2
0 − t

g24 (11)

with vertex gij given by an overlapping integral: gij(m
2
0) = α′

∫
dz

√
−g(z)e−4A(z) β(m2

0)Φi(z)Φj(z) φG(z).

Here φG(z) is the wave function for the tensor glueball. We have also generalized Φij by writing it as

Φij(t, z) = β(t)e−2A(z)Φi(z)Φj(z) for phenomenological reasons. That is, the external coupling gij is

given by an overlap-integral over a product of three wave functions, Φi(z), Φj(z) and φG(z). With the

standard normalization, A(s, t) is dimensionless.

A similar analysis can also be carried out for the Higgs production amplitude, Eq. (9). Note that the

Pomeron kernel now appears twice, K̃P (s1, t1, z1, z) and K̃P (s2, t2, z2, z). When nearing the respective

tensor poles at t1 ≃ m2
0 and t2 ≃ m2

0, the amplitude can be expressed as

A(s, s1, s2, t1, t2) ≃ g13
ΓGGH s2

(t1 − m2
0)(t2 − m2

0)
g24 (12)

As for the elastic case, we have performed the z1 and z2 integrations, and have also made use of the fact

that s1s2 ≃ κ s ≃ m2
Hs. Here ΓGGH is the effective on-shell glueball-glueball-Higgs coupling, which can

also be expressed as

ΓGGH = L(−m2
H)F (−m2

H) (13)

where L(−m2
H) = αsg

24πMW
and F is a scalar form factor F (q2) = 〈G, ++, q1|F a

µνF a
µν(0)|G,−−, q2〉. That

is, in the high energy Regge limit, the dominant contribution comes from the maximum helicity glueball

state [1], with λ = 2. In this limit, this form factor, is given by the overlap of the dilaton bulk to boundary

propagator

F (q2) = (α′m2
H)2VPPφ

∫
dz

√
−g(z)e−4A(z)φG(z)K(q, z)φG(z) (14)

What remains to be specified is the overall normalization, F (0).

We next follow D. Kharzeev and E. M. Levin [2], who noted that, from the SYM side, F (q2) at q2 = 0,

can be considered as the glueball condensate. Consider matrix elements of the trace-anomaly between

two states, |α(p)〉 and |α′(p′)〉, with four-momentum transfer q = p−p′. In particular, for a single particle

state of a tensor glueball |G(p)〉, this leads to 〈G(p)|Θα
α|G(p′)〉 =

eβ
2g 〈G(p)|F a

µνF aµν |G(p′)〉. At q = 0, the

forward matrix element of the trace of the energy-momentum tensor is given simply by the mass of the

relevant tensor glueball, with 〈G|Θα
α|G〉 = M2

G, this directly yields

F (0) = 〈G|F a
µνF aµν |G〉 = −4πM2

G

3β̃
(15)
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where β̃ = −bαs/(2π), b = 11− 2nf/3, for Nc = 3. In what follows, we will use nf = 3. Note that heavy

quark contribution is not included in this limit. Since the conformal scale breaking is due the running

coupling constant in QCD, there is apparently a mapping between QCD scale breaking and breaking of

the AdS background in the IR, which gives a finite mass to the glueball and to give a non-zero contribution

to the gauge condensate.

4.2 Extrapolation to the Near-Forward limit:

To apply the above result to the physical region, one needs to extrapolate from t near the tensor pole to

the physical region where t ≃ 0. Let us first treat the elastic amplitude. A key difference, as one moves

from t ≃ m2
0 to t ≃ 0, is the fact that the amplitude becomes complex, with the leading s-dependence

slowing down from s2 to sj0 , 1 < j0 < 2. To carry out this analysis, it is necessary to result to the J-plane

representation for the Pomeron kernel K̃P (s, t, z, z′), with the J-plane propagator G̃j(t, z, z′) given by

a sum of J-plane poles, e.g., for hardwall model. For our current purpose, it is sufficient to keep the

contribution coming from the leading trajectory,

G̃j(z, z′; t) ≃ φ̃0(z, j)
1

m2
0(j) − t

φ̃0(z
′, j) . (16)

By performing the inverse Mellin transform, the large s-behavior for the BPST kernel, K̃P (s, t, z, z′), can

be found.

As one moves away from region near the tensor pole, t ≃ m2
0, towards the physical region of t ≤ 0,

the leading J-plane structure initially remains a Regge pole so that this amplitude is normally behaved.

However, as we move close to the t = 0 boundary, the J-plane structure is model-dependent. If asymptotic

freedom is implementaed, we have seen that a pole saturation can remain meaningful. In what follows,

however, we shall use the hardwall model as a guide. In particular, we assume that, by the time t = 0,

the leading singularity is now the BPST cut. To be more precise, for the hardwall model, one finds the

amplitude is dominated by a Regge pole initially in a region m2
1 < t < m2

0, where m1 is the point where

the leading pole disappears through the BPST cut at j0 = 2 − 2
√

λ, i.e., m0(j0) = m1. In this range

A(s, t) ≃ g13(t) ξ(j(t)) (α′s)j(t) g24(t) (17)

where m0(j(t)) = t, ξ(j) is the signature factor, and gij(t) is a Regge residue which can again expressed

in the form of an overlapping integral over the product of three wave functions. This is similar to the

case of on-shell spin-2 exchange, except we need to replace the spin-2 wave function φG(z) = φ̃0(z, 2) by

a corresponding wave function for a Pomeron, φ̃0(z, j(t)), with spin shifted from 2 to j(t). Although this

shift is of the order O(1/
√

λ), it is important to note that φ̃0(z, j(t)) ∼ z∆(j(t))−2, for z → 0, in contrast

to φ̃0(z, 2) ∼ z2. We will also adopt the convention where gij(t) is dimensionless.

As one further continues to the physical region where t ≤ 0, the amplitude will now be dominated by

the contribution from the BPST cut, with the inverse Mellin transform in J turning into an integral over

the discontinuity across the cut, (−∞, j0). Since the contribution from a cut is no longer factorizable, it

leads to diffusion in the AdS-radius. Analytic expression is available in the conformal limit, and, with
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a hardwall, a similar analysis can also be carried out by parametrizing the leading Regge singularity,

e.g., m(j) ≃ m0 + (m0 − m1)

(√√
λ(j − j0)/2 − 1

)
, leading to our AdS representation for the elastic

amplitude in the forward limit, Eq. (1).

4.3 First Estimate for Double-Pomeron Contribution to Differential Cross

Section

For our present purpose, it is adequate to first ignore diffusion by adopt a simpler ansatz for the elas-

tic amplitude by freezing the AdS radius at z0 ∼ 1/ΛQCD. That is, we assume, for protons, wave-

functions are concentrated near z0, we can replace the Pomeron kernel with z and z′ evaluated at z0, i.e.,

K̃P (t, s, z, z′) → K̃P (t, s, z0, z0) with the resulting z and z′ integration leading to unity. At t = 0, this

effectively replaces the BPST cut by a pole at j0. A(s, 0) ∼ g13(0) ξ(j0) (α′s)j0 g24(0). For the Higgs

production amplitude under this ultra local approximation, it follows A(s, s1, s2, t1 ≃ 0, t2 ≃ 0) can be

approximated as g13(0)ξ(j0)(α
′s)j0ΓPPH ξ(j0) g24(0), with an effective central vertex, ΓPPH ≃ ΓGGH(0)

where we have dropped terms lower order in O(1/
√

λ).

Let us turn next to the non-forward limit. We accept the fact that, in the physical region where

t < 0 and small, the cross sections typically have an exponential form, with a logarithmic slope which

is mildly energy-dependent. We therefore approximate all amplitudes in the near forward region where

t < 0 and small, A(s, t) ≃ eBeff (s) t/2 A(s, 0) where Beff (s) is a smoothly slowly increasing function of

s, (we expect it to be logarithmic). We also assume, for t1 < 0, t2 < 0 and small, the Higgs production

amplitude is also strongly damped so that

A(s, s1, s2, t1, t2) ≃ eB′

eff(s1) t1/2eB′

eff(s2) t2/2 A(s, s1, s2, t1 ≃ 0, t2 ≃ 0) (18)

We also assume B′

eff (s) ≃ Beff (s) + b. With these, both the elastic, the total pp cross sections and

the Higgs production cross section can now be evaluated. Various cross sections will of course depend

on the unknown slope parameter, Beff , which can at best be estimated based on prior experience with

diffractive estimates.

The phase space for diffractive Higgs production can be specified by the rapidity of Higgs yH , and

two-dimensional transverse momenta qi,⊥, i = 3, 4, 5, with q5,⊥ = qH,⊥, in a frame where the incoming

momenta k1 and k2 are longitudinal. Alternatively, due to momentum conservation, we can use instead

yH , t1, t2, cosφ as four independent variables where t1 ≃ −q2
3,⊥, t2 ≃ −q2

4,⊥, and cosφ = q̂3,⊥ · q̂4,⊥.

However, the amplitude is effectively independent of φ since its dependence enters through the κ variable

where κ ≃ m2
H + q2

H,⊥ = m2
H + (q2,⊥ + q4,⊥)2. As discussed earlier, for Higgs production, we can replace

κ by κeff ≃ m2
H .

Following the earlier analysis, it is now possible to provide a first estimate for the double-diffractive

Higgs production. It is possible to adopt an approach advocated in by Kharzeev and Levin where

the dependence on Beff can be re-expressed in terms of other physical observables. Under our ap-

proximation, it is easy to show that the ratio σel/σ2
total can be expressed as σel

σ2

total

= 1+ρ2

16πBeff (s) where
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ρ ≡ Re K(0, s, z0, z0)/Im K(0, s, z0, z0). Equivalently, one can relate Beff directly in terms of the experi-

mentally smooth dimensionless ratio, Rel(s) = σel/σtotal = (1+ρ2)σtotal(s)
16πBeff (s) . Upon squaring the amplitude,

A(s, s1, s2, t1, t2), (18), the double-differential cross section for Higgs production can now be obtained.

After integrating over t1 and t2 and using the fact that, for m2
H large s ≃ s1s2/m2

H , one finds

dσ

dyH
≃ (1/π) × C′ × m−4

1 × |ΓGGH(0)|2 × σ(s)

σ(m2
H)

× R2
el(mH

√
s) (19)

In this expression above, both C′ and m2
1, like m2

0, are model dependent. In deriving the result above,

we have replaced B′

eff by Beff where the difference is unimportant at high energy. With mH in the

range of 100GeV , Rel can be taken to be in the range 0.1 to 0.2. For C′ ≃ 1, m1 ≃ m0, we find
dσ

dyH
≃ .8 ∼ 1.2 pbarn. This is of the same order as estimated in [2]. However, as also pointed in [2], this

should be considered as an over-estimate since the total inclusive Higgs production based on perturbative

QCD is of the order 1 pbarn. The major source of suppression will come from absorptive correction,

which we turn to next.

5 Discussion

We conclude by discussing how consideration of higher order contributions via an eikonal treatment

leads to corrections for the central Higgs production. Following by now established usage, the resulting

production cross section can be expressed in terms of a “survival probability”.

Although the “bare Pomeron” approximation dominates in the large Nc expansion, it is clear that

higher order summations are necessary in order to restore unitarity. In flat space Veneziano has shown that

higher closed string loops for graviton scattering eikonalize. Indeed in Refs. [3, 4] it was shown that the

same sum leads to an eikonal expansion that exponentiates for each string bit frozen in impact parameter

during the collision. To be more explicit, the resulting eikonal sum leads to an impact representation for

the 2-to-2 amplitude

A(s, x⊥ − x′⊥) = −2is

∫
dz dz′ P13(z)P24(z

′)
[
eiχ(s,x⊥

−x′⊥,z,z′) − 1
]

(20)

The eikonal χ, as a function of x⊥−x′

⊥
, z, z′ and s, can be determined by matching the first order term in

χ to the single-Pomeron contribution. In impact space representation, and one finds χ(s, x⊥−x′

⊥
, z, z′) =

g2

0

2s K̃(s, x⊥ − x′
⊥

, z, z′)

This eikonal analysis can be extended directly to Higgs production. To simplify the discussion, we shall

adopt a slightly formal treatment. Since Higgs is not part of the QCD dynamics, one can formally treat

our eikonal as a functional of a weakly coupled external background Higgs field, φH(q±, x⊥
H , zH), that is,

in (20), we replace A(s, x⊥, x′

⊥
) and χ(s, x⊥−x′⊥, z, z′) by A(s, x⊥, x′⊥; φH) and χ(s, x⊥−x′⊥, z, z′; φH),

with the understanding that they reduce to A(s, x⊥, x′
⊥

) and χ(s, x⊥−x′⊥, z, z′) respectively in the limit

φH → 0. Since Higgs production is a small effect, by expanding to first order in the Higgs background
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field, we find the leading order Higgs production amplitude, to all order in χ, becomes

AH(s1, s2, x
⊥ − x⊥

H , x′⊥ − x⊥

H , zH) = 2s

∫
dz dz′ P13(z)P24(z

′)

× χH(s1, s2, x
⊥ − x⊥

H , x′⊥ − x⊥

H , z, z′, zH) eiχ(s,x⊥
−x′⊥,z,z′)

(21)

where χH can be found by matching in the limit φH → 0 with the Higgs production amplitude, (9), due

to double-Pomeron exchange in an impact representation. The net effect of eikonal sum is to introduce

a phase factor eiχ(s,x⊥−x′

⊥
,z,z′) into the production amplitude. Due to its absorptive part, Im χ > 0, this

eikonal factor provides a strong suppression for central Higgs production.

The effect of this suppression is often expressed in terms of a “Survival Probability”, 〈S〉. In a

momentum representation, the cross section for Higgs production per unit of rapidity in the central region

is dσH(s,yH)
dyH

= 1
π3(16π)2s2

∫
d2q1⊥d2q2⊥|AH(s, yH , q1⊥, q2⊥)|2 where yH is the rapidity of the produced

Higgs, q1⊥ and q2⊥ are transverse momenta of two outgoing fast leading particle in the frame where the

momenta of incoming particles are longitudinal. “Survival Probability” is conventionally defined by the

ratio

〈S〉 ≡
∫

d2q1⊥d2q2⊥|AH(s, yH , q1⊥, q2⊥)|2
∫

d2q1⊥d2q2⊥|A(0)
H (s, yH , q1⊥, q2⊥)|2

(22)

where A
(0)
H is the corresponding amplitude before eikonal suppression, e.g., given by Eq. (9). For

simplicity, we shall also focus on the mid-rapidity production, i.e., yH ≃ 0 in the overall CM frame. In

this case, 〈S〉 is a function of overall CM energy squared, s, or the equivalent total rapidity, Y ≃ log s.

Evaluating the survival probability as given by (22), though straight forward, is often tedious. The

structure for both the numerator and the denominator is the same. For numerator factor, one has

∫
dx⊥dz dz̄ P13(z)P13(z̄)

∫
dx′

⊥dz′ dz̄′ P24(z)P24(z
′)

∫
ei(χ(s,x⊥−x′

⊥
,z,z′)−χ∗(s,x⊥−x′

⊥
,z̄,z̄′))

χH(s, s1, s2, x
⊥ − x⊥

H , x′⊥ − x⊥

H , z, z′)χ∗

H(s, s1, s2, x
⊥ − x⊥

H , x′⊥ − x⊥

H , z̄, z̄′) (23)

where we have made use of that fact that zH ≃ 1/mH . To obtain the denominator, one simply removes

the phase factor, ei(χ(s,x⊥,x′

⊥
,z,z′)−χ∗(s,x⊥,x′

⊥
,z̄,z̄′)). It is now clear that it is this extra factor which controls

the strength of suppression.

To gain a qualitative estimate, let us consider the local limit where z ≃ z̄ ≃ z0 and z′ ≃ z̄′ ≃ z′0, with

z0 ≃ z′0 ≃ 1/ΛQCD. In this limit, one finds that this suppression factor reduces to

e−2 Im χ(s,x⊥,x′

⊥
,z0,z′

0
) (24)

where Im χ > 0 by unitarity. If follows that, in a super-gravity limit of strong coupling where the eikonal

is strictly real, there will be no suppression and the survival probability is 1. Conversely, the fact that

phenomenologically a small survival probability is required is another evidence of we need to work in an

intermediate region where 1 < j0 < 2. In this more realistic limit, Im χ is large and cannot be neglected.
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In particular, it follows that the dominant region for diffractive Higgs production in pp scattering comes

from the region where

Im χ(s, x⊥ − x′

⊥, z, z′) = O(1), (25)

with z ≃ z′ = O(1/Λqcd). Note that this is precisely the edge of the “disk region” for p-p scattering. In

order to carry out a quantitative analysis, it is imperative that we learn the property of χ(s,~b, z) for |~b|
large. From our experience with pp scattering, DIS at HERA, etc., we know that confinement will play a

crucial role. In pp scattering, since z ≃ z′ = O(1/Λqcd), we expect this condition is reached at relatively

low energy, as is the case for total cross section. It therefore plays a dominant role in determining the

magnitude of diffractive Higgs production at LHC. We will not discuss this issue here further; more

pertinent discussions on how to determine χ(s, x⊥ − x′

⊥
, z, z′) when confinement is important can be

found in Ref. [7].
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