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Abstract. The properties of the gauge invariant quark Green’s function, defined with
a path-ordered phase factor along a straight line, are studied in two-dimensional QCD
and in the large-Nc limit. The analysis is done by means of an exact integrodifferential
equation. The Green’s function is found to be infrared finite, with singularities in
the momentum squared variable represented by an infinite number of threshold type
branch points with a power -3/2, starting at positive mass squared values, with cuts
lying on the positive real axis. The expression of the Green’s function is analytically
determined.

PACS numbers: 12.38.Aw, 12.38.Lg

1 Introduction

Gauge invariant Green’s functions are generally defined with the aid of path-ordered
gauge field phase factors [1, 2]. Wilson loops [3] appear to be basic tools for the inves-
tigation of the properties of gauge invariant Green’s functions [4, 5, 6, 7, 8]. We report
in this talk results obtained in this area, concerning an integrodifferential equation
satisfied by the two-point gauge invariant quark Green’s function (2PGIQGF) and
its resolution when QCD is considered in its two-dimensional version in the large-Nc

limit [9, 10].
The 2PGIQGF is defined as

Sαβ(x, x
′;Cx′x) = − 1

Nc
〈ψβ(x

′)U(Cx′x; x
′, x)ψα(x)〉, (1)

where the averaging is considered in the path integral formalism; α and β are the
Dirac spinor indices, while the color indices are implicitly summed, quarks being
considered in the fundamental representation of the color gauge group SU(Nc); U is
a path-ordered gluon field phase factor along a line Cx′x joining a point x to a point
x′, with an orientation defined from x to x′:

U(Cx′x; x
′, x) = Pe

−ig
∫ x′

x
dzµAµ(z)

. (2)
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2 Paths with polygonal lines

Green’s functions with paths along skew-polygonal lines (polygonal lines in space)
are of particular interest, since they can be decomposed into the succession of simpler
straight line segments. On the other hand, the latter objects are Lorentz invariant
in form and this leads to a simplification of the analysis of the spectral properties
of the corresponding Green’s function in momentum space. Furthermore, paths with
polygonal lines can easily be classified according to the number of segments that are
present.

For polygonal lines with n sides and n−1 junction points y1, y2, . . ., yn−1 between
the segments, we define:

S(n)(x, x
′; yn−1, . . . , y1) = − 1

Nc

〈ψ(x′)U(x′, yn−1)U(yn−1, yn−2) . . . U(y1, x)ψ(x)〉, (3)

where now each U is along a straight line segment. The simplest such function
corresponds to n = 1, for which the points x and x′ are joined by a single straight
line:

S(1)(x, x
′) ≡ S(x, x′) = − 1

Nc

〈ψ(x′)U(x′, x)ψ(x)〉. (4)

(We shall generally omit the index 1 from that function.)

3 Integrodifferential equation

To quantize the theory one may proceed in two steps. First, one integrates with
respect to the quark fields. This produces in various terms the quark propagator in
the presence of the gluon field. Then one integrates with respect to the gluon field
through Wilson loops. To accomplish the latter step, we use for the quark propaga-
tor in external field a representation which involves phase factors along straight lines
together with the full gauge invariant quark Green’s function [9, 11]. This represen-
tation is a generalization of the one introduced by Eichten and Feinberg when dealing
with the heavy quark limit [12].

The quark propagator in the external gluon field is expanded around the following
gauge covariant quantity:

[
S̃(x, x′)

]a
b
≡ S(x, x′)

[
U(x, x′)

]a
b
. (5)

It is possible to set up an integral equation realizing iteratively the previous expansion.
Its systematic use leads to the derivation of functional relations between the Green’s
functions S(n) (polygonal line with n segments) and S (one segment).

Use of the above representation allows the introduction of phase factors along an
infinite sum of polygonal lines between the points x and x′. These lines, together
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with the phase factor lines already existing in the definition of the gauge invariant
Green’s functions, then form closed polygonal contours and produce Wilson loops.
Using then the equations of motion relative to the Green’s functions, one establishes
the following equation for S(x, x′) [9]:

(iγ.∂(x) −m)S(x, x′) = iδ4(x− x′) + iγµ
{
K2µ(x

′, x, y1)S(2)(y1, x
′; x)

+
∞∑

n=3

Knµ(x
′, x, y1, . . . , yn−1)S(n)(yn−1, x

′; x, y1, . . . , yn−2)
}
, (6)

where the kernel Kn (n = 2, 3, . . .) contains globally n derivatives of the logarithm
of the Wilson loop average along an (n + 1)-sided polygonal contour and also the
Green’s function S and its derivative. The Green’s functions S(n) being themselves
related to the simplest Green’s function S through series expansions resulting from
functional relations, eq. (6) is ultimately an integrodifferential equation for S. One
expects that the kernels with small number of derivatives will provide the most salient
contributions. Therefore, the first kernel K2 in eq. (6) would contain the leading effect
of the interaction.

4 Physical interest of the quark Green’s function

The physical interest of the 2PGIQGF is best exhibited from its spectral analysis.
If the theory is confining, then it is not possible to cut the Green’s function (1)
and to saturate it with a complete set of physical states (hadrons), which are color
singlets. Intermediate states are necessarily colored states, since single quark fields
in the fundamental representation cannot produce with any number of gluon fields in
the adjoint representation, present in the phase factor, color singlet objects. If one
relates, as usual, the singularity structure of the Green’s functions to the contribution
of physical intermediate states [13, 14], then this would suggest that the Green’s
function above does not have any singularity. However, the equation it satisfies, eq.
(6), derived from the QCD Lagrangian, contains singularities, generated by the free
quark propagator (the inverse of the Dirac operator in the left-hand side of eq. (6)).

The above paradoxical situation is overcome with the acceptance that quarks and
gluons, as the building blocks of the theory, continue forming a complete set of states
with positive energies and could be used for any saturation scheme of intermediate
states. It is the resolution of the equations of motion which should indicate to us how
the related singularities combine to form the complete solutions.

Therefore, the knowledge of the 2PGIQGF provides a direct information about
the effect of confinement in the colored sector of quarks.
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5 Spectral functions

Green’s functions with paths along straight lines are dependent only on the end
points of the paths. This facilitates the passage to momentum space by Fourier
transformation.

It is advantageous to consider for that purpose the path-ordered phase factor in its
representation given by the formal series expansion in terms of the coupling constant
g. Using for each term of the series, together with the quark fields, the spectral
analysis with intermediate states and causality, one arrives at a generalized form of
the Källén–Lehmann representation for the Green’s function S in momentum space,
in which the cut lies on the positive real axis starting from the quark mass squared
m2 and extending to infinity [15, 16, 17, 18, 19].

Taking into account translation invariance, we introduce the Fourier transform of
the Green’s function S into momentum space:

S(x, x′) = S(x− x′) =
∫

d4p

(2π)4
e−ip.(x − x′) S(p). (7)

S(p) has the following representation in terms of real spectral functions ρ
(n)
1 and ρ

(n)
0

(n = 1, . . . ,∞):

S(p) = i
∫

∞

0
ds′

∞∑

n=1

[ γ.p ρ
(n)
1 (s′) + ρ

(n)
0 (s′) ]

(p2 − s′ + iε)n
. (8)

Depending on the degrees of the singularities at threshold, simplifications may occur
by integrations by parts, or otherwise by summation, reducing the series into more
compact forms.

6 Two-dimensional QCD

Many simplifications occur in two-dimensional QCD at large Nc [20, 21, 22]. This
theory is expected to have the essential features of confinement observed in four
dimensions, with the additional simplification that asymptotic freedom is realized here
in a trivial way, since the theory is superrenormalizable. For simple contours, Wilson
loop averages in two dimensions are exponential functionals of the areas enclosed by
the contours [23, 24, 25]. Furthermore, at large Nc, crossed diagrams and quark loop
contributions disappear.

It turns out that in two dimensions and at large Nc, only the lowest-order kernel
K2 survives in eq. (6). The equation reduces then to the following form [10]:

(iγ.∂ −m)S(x) = iδ2(x)− σγµ(gµαgνβ − gµβgνα)x
νxβ

×
[ ∫ 1

0
dλ λ2 S((1− λ)x)γαS(λx) +

∫
∞

1
dξ S((1− ξ)x)γαS(ξx)

]
, (9)
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where σ is the string tension.
The equation is solved by decomposing S into Lorentz invariant parts:

S(p) = γ.pF1(p
2) + F0(p

2), (10)

or, in x-space:

S(x) =
1

2π

(iγ.x
r
F̃1(r) + F̃0(r)

)
, r =

√
−x2. (11)

One obtains, with the introduction of the Lorentz invariant functions, two coupled
equations. Their resolution proceeds through several steps, mainly based on the
analyticity properties resulting from the spectral representation (8). The solutions
are obtained in explicit form for any value of the quark mass m.

The covariant functions F1(p
2) and F0(p

2) are, for complex p2:

F1(p
2) = −i π

2σ

∞∑

n=1

bn
1

(M2
n − p2)3/2

, (12)

F0(p
2) = i

π

2σ

∞∑

n=1

(−1)nbn
Mn

(M2
n − p2)3/2

. (13)

The masses Mn (n = 1, 2, . . .) have positive values greater than the quark mass m
and are labelled with increasing values with respect to n; their squares represent
the locations of branch point singularities with power −3/2, with cuts lying on the
positive real axis of the complex plane of p2. The masses Mn and the coefficients
bn satisfy an infinite set of coupled algebraic equations that are solved numerically.
Their asymptotic behaviors for large n, such that σπn≫ m2, are:

M2
n ≃ σπn, bn ≃ σ2

Mn
. (14)

In x-space, the solutions are:

F̃1(r) =
π

2σ

∞∑

n=1

bn e
−Mnr, F̃0(r) =

π

2σ

∞∑

n=1

(−1)n+1bn e
−Mnr. (15)

[r =
√
−x2.]

At high energies, the solutions satisfy asymptotic freedom [26]:

F1(p
2) =

p2→−∞

i

p2
, (16)

F0(p
2) =

p2→−∞

im

p2
, m 6= 0, (17)

F0(p
2) =

p2→−∞

2iσ

Nc

〈ψψ〉
(p2)2

, m = 0, (18)

where in the last equation we have introduced the one-flavor quark condensate.
We present in Fig. 1 the function iF0 for spacelike p and in Fig. 2 its real part

for timelike p, for the case m = 0.
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Figure 1: The function iF0 for spacelike p, in mass unit of
√
σ/π, for m = 0.
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Figure 2: The real part of the function iF0 for timelike p, in mass unit of
√
σ/π, for

m = 0.
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7 Conclusion

The spectral functions of the quark Green’s function are infrared finite and lie on the
positive real axis of p2. No singularities in the complex plane or on the negative real
axis have been found. This means that quarks contribute like physical particles with
positive energies. (In two dimensions there are no physical gluons.)

The singularities of the Green’s function are represented by an infinite number of
threshold type singularities, characterized by a power of −3/2 and positive masses
Mn (n = 1, 2, . . .). The corresponding singularities are stronger than simple poles
and this feature might be at the origin of the unobservability of quarks as asymptotic
states.

The threshold masses Mn represent dynamically generated masses, since they are
not present in the QCD Lagrangian. They survive even when the quark mass is zero.
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