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1 Introduction

The main subject of this paper is the role of effects due to hadronization in the
theoretical description of inclusive τ lepton decay. This paper employs the results of
the studies of this strong interaction process elaborated over past several years [1–6]
and presents some new results recently obtained in this field [7].

The τ lepton is the only lepton which is heavy enough to decay into hadrons. This
feature enables one to use this process in tests of Quantum Chromodynamics (QCD)
and entire Standard Model. The theoretical description of inclusive τ lepton hadronic
decay, similarly to the case of electron–positron annihilation into hadrons, requires
no such phenomenological models as, for example, the so–called “Parton Distribu-
tion Functions” involved in the analysis of Deep Inelastic Scattering processes. It is
worthwhile to note also that the experimental measurements of τ lepton decay are of
a high accuracy. But the most interesting feature of this process is that it probes the
hadron dynamics at energies below the mass of τ lepton.

The experimentally measurable quantity here is the ratio of the total width of
τ lepton decay into hadrons to the width of its leptonic decay, which can be decom-
posed into three parts, namely

Rτ =
Γ(τ− → hadrons− ντ )

Γ(τ− → e− ν̄e ντ )
= Rτ,V + Rτ,A + Rτ,S. (1)

In the right–hand side of this equation, the first two terms account for the hadronic
decay modes involving light quarks (u, d) only and associated with vector (V) and
axial–vector (A) quark currents, respectively, whereas the last term accounts for the
decay modes which involve strange quark. Each of the first two terms can be further
decomposed into two parts according to the angular momentum in the hadronic rest
frame, namely

Rτ,V = RJ=0

τ,V + RJ=1

τ,V , Rτ,A = RJ=0

τ,A + RJ=1

τ,A . (2)

In what follows we shall restrict ourselves to the consideration of parts RJ=1
τ,V and RJ=1

τ,A

of ratio Rτ (1).
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2 Theoretical description of τ lepton decay

The theoretical prediction for the quantities on hand (2) reads

RJ=1

τ,V/A =
Nc

2
|Vud|2 SEW

(
∆V/A

QCD + δ′EW

)
, (3)

where Nc = 3 is the number of colors, |Vud| = 0.9738±0.0005 is Cabibbo–Kobayashi–
Maskawa matrix element [8], SEW = 1.0194± 0.0050 and δ′EW = 0.0010 stand for the
electroweak corrections (see Refs. [9–11]), and

∆V/A

QCD = 2
∫ M2

τ

m2
V/A

f
(

s

M2
τ

)
RV/A(s)

ds

M2
τ

(4)

denotes the QCD contribution. Here Mτ = 1.777 GeV is the mass of τ lepton [8],
mV/A stands for the total mass of the lightest allowed hadronic decay mode of τ lepton
in the corresponding channel, f(x) = (1− x)2 (1 + 2x), and

RV/A(s) =
1

2πi
lim

ε→0+

[
ΠV/A(s + iε)− ΠV/A(s− iε)

]
=

1

π
Im lim

ε→0+

ΠV/A(s + iε), (5)

with ΠV/A(q2) being the hadronic vacuum polarization function. In what follows the
superscripts “V” and “A” will only be shown when relevant.

In general, it is convenient to perform the theoretical analysis of inclusive τ lepton
decay in terms of the Adler function [12]

D(Q2) = −d Π(−Q2)

d ln Q2
, Q2 = −q2 = −s. (6)

In the framework of perturbation theory its ultraviolet behavior can be approximated
by power series in the strong running coupling αs(Q

2)

D(Q2) ' D
(`)
pert(Q

2) = 1 +
∑`

j=1
dj

[
α(`)

s (Q2)
]j

, Q2 →∞, (7)

where at the one–loop level (i.e., for ` = 1) α(1)
s (Q2) = 4π/(β0 ln z), z = Q2/Λ2,

β0 = 11 − 2nf/3, Λ denotes the QCD scale parameter, nf is the number of active
flavors (nf = 2 will be assumed hereinafter), and d1 = 1/π, see papers [13–15] and
references therein for the details. It is worth noting also that the function R(s) (5)
and the Adler function (6) can be expressed in terms of each other by making use of
the following relations (see Refs. [12,16,17] for the details)

R(s) =
1

2πi
lim

ε→0+

∫ s−iε

s+iε
D(−ζ)

dζ

ζ
←→ D(Q2) = Q2

∫ ∞

m2

R(s)

(s + Q2)2
ds . (8)
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In first of these equations the integration contour in the complex ζ–plane lies in the
region of analyticity of the integrand.

It is important to outline here that all the mentioned above is only valid for
“true physical” hadronic vacuum polarization function Πphys(q

2) and Adler func-
tion Dphys(Q

2). However, as it often happens, one has to deal with their perturbative
approximations Πpert(q

2) and Dpert(Q
2), which are valid in the ultraviolet asymptotic

only. Besides, expressions Πpert(q
2) and Dpert(Q

2) are inconsistent with dispersion
relation (8), which is determined by the kinematics of physical process on hand.

Thus, one arrives at the point where the results of perturbation theory need to
be “merged” with relevant dispersion relations. This objective can be achieved in
the framework of “Dispersive approach” to QCD, which will be briefly overviewed
in Sect. 4. The theoretical description of inclusive τ lepton hadronic decay within
Dispersive approach will be performed in Sect. 4, whereas the analysis of this process
within perturbative approach will be discussed in Sect. 3.

3 Perturbative approach

In this Section, we shall study the massless limit, that implies that the masses of
all final state particles are neglected. In this case, by making use of definitions (5)
and (6), integrating by parts, and employing Cauchy theorem, the quantity ∆QCD (4)
can be represented as

∆QCD =
1

2π

∫ π

−π
D

(
M2

τ eiθ
)(

1 + 2eiθ − 2ei3θ − ei4θ
)
dθ, (9)

see, e.g., papers [9, 18–20] and references therein. In general, in Eqs. (5) and (6) it
is convenient to handle the leading contributions (i.e., the terms of 0-th order in the
strong running coupling) separately from the contributions due to strong interaction,
namely

R(s) = r(0)(s) + r(`)(s), D(Q2) = d(0)(Q2) + d(`)(Q2). (10)

In what follows we shall restrict ourselves to the one–loop level (` = 1).
In fact, the only available option within perturbative approach is to directly use

in the theoretical expression for ∆QCD (despite of remarks given in Sect. 2) the per-
turbative approximation of hadronic vacuum polarization function Πpert(q

2) instead
of its unknown “true physical” expression Πphys(q

2). For the case of functions (9)
and (7), this prescription eventually results in (see Ref. [7] for the details)

r(0)(s) = 1 ←→ d(0)(Q2) = 1, (11)

∆pert = 1 +
4

β0

∫ π

0

c0A1(θ) + θA2(θ)

π(c2
0 + θ2)

dθ, (12)
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Figure 1: Comparison of the one–loop perturbative expression ∆pert (12) (solid curves)
with relevant experimental data (14) (horizontal shaded bands). The leading–order
terms of ∆pert (12) are denoted by horizontal dashed lines. The solution for QCD
scale parameter Λ (if exists) is shown by vertical dashed band. The left and right
plots correspond to vector and axial–vector channels, respectively.

where c0 = ln(M2
τ /Λ2) and

A1(θ) = 1+2 cos(θ)−2 cos(3θ)−cos(4θ), A2(θ) = 2 sin(θ)−2 sin(3θ)−sin(4θ). (13)

Let us proceed now to the comparison of one–loop perturbative result (12) with
corresponding experimental data. First of all, it is worth emphasizing here that
perturbative approach gives identical predictions for functions ∆V/A

QCD (4) in vector
and axial–vector channels (i.e., ∆V

pert ≡ ∆A
pert). However, their experimental values

extracted from data presented in Refs. [20–22] are different, namely

∆V

exp = 1.221± 0.057, ∆A

exp = 0.748± 0.032. (14)

These quantities are juxtaposed with perturbative result (12) in Fig. 1. As one
can infer from this figure, for vector channel the corresponding value of QCD scale
parameter is Λ = (465+140

−154) MeV (formally, there is also the second solution, Λ =
(1646+26

−29) MeV, which will not be considered hereinafter). As for the axial–vector
channel, the perturbative approach fails to describe experimental data on τ lepton
hadronic decay, since for any value of Λ the function ∆pert (12) exceeds ∆A

exp (14).

4 Dispersive approach

4.1 General remarks

It is crucial to emphasize that the analysis presented in Sect. 3 entirely leaves out the
effects due to hadronization, which play an important role in the studies of strong
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interaction processes at low energies. Specifically, the mathematical realization of
the physical fact, that in a strong interaction process no final state hadrons can be
produced at energies below the total mass of the lightest allowed hadronic final state,
consists in the fact that the beginning of cut of corresponding hadronic vacuum po-
larization function Π(q2) in complex q2–plane is located at the threshold of hadronic
production, but not at the point q2 = 0. Such limitations are inherently embodied
within relevant dispersion relations, which, in turn, impose stringent physical nonper-
turbative constraints on the quantities on hand. Obviously, these restrictions should
certainly be accounted for when one is trying to go beyond the limits of perturbation
theory.

The nonperturbative constraints, which dispersion relation (8) imposes on the
Adler function (6), have been merged with perturbative result (7) in the framework
of Dispersive approach to QCD, that has eventually led to the following integral
representations for functions (5) and (6) (see Refs. [3, 4, 6] for the details):

R(s) = r(0)(s) + θ
(
1− m2

s

)∫ ∞

s
ρ(σ)

dσ

σ
, (15)

D(Q2) = d(0)(Q2) +
Q2

Q2 + m2

∫ ∞

m2
ρ(σ)

σ −m2

σ + Q2

dσ

σ
, (16)

where θ(x) is the unit step–function (θ(x) = 1 if x ≥ 0 and θ(x) = 0 otherwise)
and ρ(σ) denotes the so–called spectral density. It is worth mentioning that in the
massless limit (m → 0) expressions (15) and (16) become identical to those of the so–
called “Analytic perturbation theory” [23–26]. But it is essential to keep the hadronic
mass m nonvanishing within the approach on hand.

Let us proceed now to the description of inclusive τ lepton hadronic decay within
Dispersive approach. It is worthwhile to note here that there are two distinctions
between the approach on hand and the massless perturbative approach presented
in Sect. 3. Specifically, the first distinction is the incorporation of effects due to
hadronization, and the second one is the expression for the one–loop spectral density

ρ(σ) =
4

β0

1

ln2(σ/Λ2) + π2
+

Λ2

σ
, (17)

which resembles previously studied nonperturbative model [1, 2, 6, 27–29]. In the
right–hand side of Eq. (17) the first term is the one–loop perturbative contribution
whereas the second term represents intrinsically nonperturbative part of the spectral
density.

4.2 Abrupt kinematic threshold

There are two options in the framework of Dispersive approach. The first one is the
so–called “abrupt kinematic threshold”, which implies that the leading–order term
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Figure 2: Comparison of expression (19) (solid curves) with relevant experimental
data (14) (horizontal shaded bands). The leading–order terms of ∆V/A

QCD (19) are de-
noted by horizontal dashed lines. The solution for QCD scale parameter Λ (if exists)
is shown by vertical dashed band. The left and right plots correspond to vector and
axial–vector channels, respectively.

of R(s) (5) is approximated by the step–function

r
(0)
V/A(s) = θ

(
1− m2

V/A

s

)
←→ d

(0)
V/A(Q2) =

Q2

Q2 + m2
V/A

, (18)

see papers [3,4,6] and references therein for the details. Equation (18) accounts only
for basic kinematic restriction on hadronic vacuum polarization function Π(q2) and,
in fact, represents a rather rough approximation. In this case the quantity ∆V/A

QCD (4)
reads [6]

∆V/A

QCD = 1− g(ζV/A) +
∫ ∞

m2
V/A

H
(

σ

M2
τ

)
ρ(σ)

dσ

σ
, (19)

where ζV/A = m2
V/A/M2

τ and

H(x) = g(x) θ(1− x) + g(1) θ(x− 1)− g(ζV/A), g(x) = x(2− 2x2 + x3). (20)

However, similarly to perturbative case (12), expression (19) is unable to describe the
experimental data on τ lepton hadronic decay in axial–vector channel (14), see Fig. 2.

4.3 Smooth kinematic threshold

The second, more accurate, option within Dispersive approach is the so–called “smooth
kinematic threshold”. In this case the leading–order term of R(s) (5) takes the fol-
lowing form [7]

r
(0)
V/A(s) =

(
1−m2

V/A

s

)3/2

←→ d
(0)
V/A(Q2) = 1+

3

ξ

{
1+u(ξ) ln

√
1+2ξ[1−u(ξ)]

}
, (21)
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Figure 3: Comparison of expression (22) (solid curves) with relevant experimental
data (14) (horizontal shaded bands). The leading–order terms of ∆V/A

QCD (22) are de-
noted by horizontal dashed lines. The solutions for QCD scale parameter Λ are
shown by vertical dashed bands. The left and right plots correspond to vector and
axial–vector channels, respectively.

where u(ξ) =
√

1 + ξ−1 and ξ = Q2/m2
V/A. Eventually this leads to the following

expression for the quantity ∆V/A
QCD (4):

∆V/A

QCD =
√

1− ζV/A

(
1 + 6ζV/A − 5

8
ζ2

V/A +
3

16
ζ3

V/A

)
+

∫ ∞

m2
V/A

H
(

σ

M2
τ

)
ρ(σ)

dσ

σ

−3ζV/A

(
1 +

1

8
ζ2

V/A −
1

32
ζ3

V/A

)
ln

[
2

ζV/A

(
1 +

√
1− ζV/A

)
− 1

]
, (22)

see paper [7] and references therein for the details.
It is worth noting also that in the massless limit (m → 0) both equations (19)

and (22) acquire the same form

∆QCD = 1 +
∫ ∞

0
h

(
σ

M2
τ

)
ρ(σ)

dσ

σ
, h(x) = g(x) θ(1− x) + g(1) θ(x− 1). (23)

In the perturbative case the difference between expressions (23) and (12) is due to
the residue term

∆res =
4

β0

h1

(
Λ2

M2
τ

)
, h1(x)=h2(x)θ(1− x) + h2(1)θ(x− 1), h2(x)=x(2− 2x2− x3),

(24)
which appears to be additionally accounted for in Eq. (12), see discussion of this issue
in paper [7].

The comparison of obtained result (22) with experimental data (14) yields nearly
identical solutions for QCD scale parameter Λ in both channels, see Fig. 3. Namely,
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Figure 4: The solutions for QCD scale parameter Λ obtained within Dispersive ap-
proach (22) for vector and axial–vector channels (vertical dashed green bands) and
perturbative solution (12) corresponding to vector channel (vertical dashed light–blue
band).

Λ = (412± 34) MeV for vector channel and Λ = (446± 33) MeV for axial–vector one.
Besides, as one can infer from Fig. 4, both these solutions for QCD scale parameter
agree very well with perturbative solution Λ = (465+140

−154) MeV obtained in Sect. 3.

5 Conclusions

Theoretical description of inclusive τ lepton hadronic decay is performed in the frame-
work of Dispersive approach to QCD. The significance of effects due to hadronization
is convincingly demonstrated. The approach on hand is capable of describing exper-
imental data on τ lepton decay in vector and axial–vector channels. The vicinity
of values of QCD scale parameter Λ obtained in both channels testifies to the self–
consistency of developed approach.
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