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1 Introduction

One of the outstanding problem in the quantum field theory is the understanding
of the thermodynamical phase structure of the non-abelian gauge theory. Although
it is difficult to solve it in general situation, if Yang-Mills theory is on a sphere,
perturbative analysis is possible [1, 2, 3, 4]. In this case, since the spatial components
of the gauge fields are massive, we can perturbatively integrate out them and obtain
an effective action for the temporal component A0. Owing to the gauge invariance,
this effective action is described by the Polyakov loop operator.

W0 ≡
1

N
TrP

(
exp

[
i

∫ β

0

A0dx
0

])
. (1)

Interestingly this effective action exhibits the confinement/deconfinement transition
in the large N limit. Thus this model is important as a toy model for Yang-Mills
theory on Rn.

In this talk, I show that we can evaluate the phase structure of large N SU(N)
Yang-Mills theory on torus if the volume of the torus is sufficiently ‘small’ [5, ?, 6].
(I will explain the definition of ‘small’ soon.) Although the gauge field are classically
massless in this case contrary to the sphere case, they obtain masses dynamically and
the low energy effective action would be described by some Polyakov loop operators.
As a result, we are able to evaluate the phase structure in this case too. Since this
model has been studied in lattice gauge theories (see [7] for review) and holography
[8, 9, 10, 11, 12], our results would be valuable to verify the validity of these methods.
Indeed we found some problems of the holography in our model. These problems
are related to a more serious issue in holographic QCD [9], which was pointed out in
[13]. The resolution of these problems was proposed in [14]. The understanding of
our model had played an important role to lead this resolution.
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2 Set up

Let us consider a Euclidean d+D-dimensional gauge theory on a d+D-dimensional
torus with radii Lµ

1

S =

∫ β

0

dt

(
D+d−1∏
M=1

∫ LM

0

dxM

)
1

4g2d+D

TrF 2
µν . (2)

Here the length of the temporal circle is denoted as L0 = β and the rest are denoted
as LM ,M = 1, ..., d + D − 1. The phases of (2) are characterized by Wilson lines
around the d+D noncontractible cycles of the torus:

Wµ = TrUµ ≡ 1

N
TrP

(
exp

[
i

∫ Lµ

0

Aµdx
µ

])
, (3)

where no sum over µ is intended. These Wilson loops transform nontrivially under the
centre symmetry. For sufficiently large radii Lµ, all Wµ vanish, signifying unbroken
centre symmetry. Since W0 can be interpreted as exp[−Sq], where Sq is the action for
a static quark, the phase with ⟨W0⟩ = 0 exhibits confinement. As is well-known, as β
is reduced (i.e. the temperature is increased), below a certain critical value βc, ⟨W0⟩
becomes non-zero, signaling a deconfinement transition together with a breaking of
the centre symmetry Zd+D

N → Zd+D−1
N . It has been argued from lattice studies (see

[7]) that as the other radii are successively reduced, one has a cascade of analogous
symmetry breaking transitions Zd+D−1

N → Zd+D−2
N → ... → 1.

While it would be fascinating to study all the above phases analytically, in the
current study we will be able to study the phases of a D + 2 dimensional pure Yang
Mills theory on TD+2 (i.e. (2) with d = 2) in which a D-dimensional torus (with radii
LI/(2π), I = 1, 2, ..., D) is taken as small (ensuring broken ZN symmetries in those
directions), leaving the remaining d = 2 directions (including time) of variable size.
Such a theory is given by a Kaluza-Klein reduction of (2) on the small TD, and is
described by the following action:

S =

∫ β

0

dt

∫ L

0

dxTr

(
1

2g2
F 2
01 +

D∑
I=1

1

2

(
DµY

I
)2

+
m2

2
(Y I)2 −

∑
I,J

g′2

4
[Y I , Y J ][Y I , Y J ]

)
.

(4)

Here Y I comes from the gauge field components AI+1 and the covariant derivative
is defined as Dµ = ∂µ − i[Aµ, ]. A naive KK reduction leads to massless Y I ’s and
g = g′; however, a mass m for the adjoint scalars as well as radiative splitting between
g and g′ is induced from loops of KK modes.

We will analyse this model and show the phase structure in the following sections.
1Our notation for spacetime coordinates is: {x0 ≡ t, xM},M = 1, ..., d+D − 1. We will further

split the d+D − 1 coordinates into d ‘large’ dimensions {x0, x
i}, i = 1, ..., d− 1 and and D ‘small’

dimensions xI , I = 1, 2, ...D (the meaning of ‘large’ and ‘small’ is explained below).
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3 Outline of the derivation of the effective action

In this section, we will show the outline for the derivation of the low energy effective
theory from (4). We consider two limits: L → ∞ and L → 0, and evaluate the phase
structure by changing β. Since the system has a Z2 symmetry β ↔ L, we can obtain
the phase structure for large β and small β regime as well. (However we have not
succeeded in the evaluation in the intermediate regime.)

3.1 Effective action in L → ∞
We consider the derivation of the low energy effective action in the large L case. We
are integrating out the adjoint scalars Y I in a 1/D expansion [5, ?, 6, 15]. Through
the comparison with numerical studies [16, 17], this expansion is expected to be valid
if D ≥ 2.

Let us take the following limit,

g, g′ → 0, N,D → ∞ s.t. λ̃ ≡ g2DN, λ̃′ ≡ g′
2
DN fixed. (5)

Then we can find a non-trivial saddle point characterized by

⟨
TrY IY I

⟩
=

DN2

λ̃′
∆2

0. (6)

Here ∆0 is given by

∆0 =

√
λ̃′

2π
log

(
2πΛ2

λ̃′

)
+ · · · , (7)

for a low temperature case. (This expression is valid if temperature is not so higher
than the critical temperature for the confinement/deconfinement transition.) Here Λ
is a cut off scale.

Around this saddle point, the adjoint scalar Y I obtain a dynamical mass ∆0 and
interactions (Y I)2n (n ≥ 2) are suppressed by a factor of 1/D 2. Thus if the theory
is weak coupling (λ̃ ≪ ∆2

0), we can integrate out Y I perturbatively and obtain an
effective action for a matrix

U(x) = P exp[i

∫ β

0

dtA0(x, t)] = exp[iβA0(x)], (8)

2In the small L case, the next order of the 1/D expansion has been evaluated [5]. There, such
1/D corrections do not change the nature of the phase structure. We can expect that the same
thing will happen in our two dimensional gauge theory also. Hence we do not evaluate the 1/D
corrections in large L case.
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as

S/DN2 = C(λ̃′,∆0) +

∫ ∞

−∞
dx

[
1

2N
Tr
(
|∂xU |2

)
− ξ

N2
|TrU |2

]
, (9)

for a large L and low temperature [6]. Here

ξ =

√
∆0

2πλ̃2β3
e−∆0β, C(λ̃′,∆0) =

βL∆2
0

8π

(
1 +

π∆2
0

λ̃′

)
. (10)

Note that ξ is a monotonically decreasing function of β. In the next section, we
evaluate the phase structure of this effective potential.

3.2 Effective action in L → 0

Through a similar procedure to the L → ∞ case, we can derive an effective action3

for a small L by using the large D expansion [5] as

Seff ({un})/DN2 =
3

8
βλ̃

1/3
1 + a|u1|2 + b|u1|4 + · · · , (11)

where λ̃1 is a one dimensional ’tHooft like coupling g′2N(D + 1)/L. Here

a =

(
1

D
− e−βλ̃

1/3
1

)
, b =

1

3
βλ̃

1/3
1 e−2βλ̃

1/3
1 , (12)

and un = TrUn, where U for small L is defined by (8) with the zero mode of A0 along
the L-direction.

4 Phase structure of the Yang-Mills theory

Now we evaluate the phase structure of the effective action (9) and (11). In each case,
the phases are characterized by the distribution of the eigenvalue density

ρ(θ, x) =
1

N

N∑
i=1

δ(θ − θi(x)), (13)

where exp (iθi(x)) are the eigenvalues of (8). Depending on β and L, the distribution
changes three configurations: uniform, non-uniform and gapped. See figure 1. Note
that, since the ZN symmetry along the temporal circle is related to the translation
symmetry of the eigenvalue density along the θ coordinate, the uniform distribution
corresponds to the confinement phase (in which the ZN symmetry is preserved) and
the other two distributions correspond to the deconfinement phase (in which the ZN

symmetry is broken).
3The effective action is calculated for m = 0. Note that the mass from the KK modes for small

L is proportional to
√
λ1L. Thus the mass correction is small and we ignore it.
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Figure 1: Configurations of eigenvalue density ρ(θ) in the unitary matrix model. The
left plot is the uniform distribution , the middle one is the non-uniform distribution
and the right one is the gapped distribution.

4.1 The phase transition at Large L

Phase transitions in the system (9) have been discussed in [18, 19] in different contexts.
We will adopt their result to infer about phase transitions in our two-dimensional
gauge theory (4) at large L. By comparing the free energies, we can evaluate the
stabilities of the solutions. They can be summarised as follows:

• Independent of the value of ξ, the uniform solution always exists. We call this
phase as I.

• For ξ < ξ0 = 0.227, only one solution (phase I) exists and is stable.

• At ξ = ξ0, there is nucleation of two gapped solutions. One is unstable (phase
II) and another is meta-stable (phase III).

• At ξ = ξ1 = 0.23125, a GWW type phase transition [20, 21] occurs in phase
II and the gapped solution becomes a solution with non-uniform distribution
(Phase IV).

• At ξ = ξ2 = 0.237, there is a first order phase transition between the phases I
and III. Above ξ2, the phase III is stable and the phase I is meta-stable.

• At ξ = ξ3 = 1/4, phase IV merges into phase I, and the uniform solution
becomes unstable beyond ξ3.

These are summarised in figure 2.
Using (10), we can read off the critical temperatures corresponding to these tran-

sition points:

βm ≡ β(ξm) =
3

2∆0

W

[
2

3(2πξ2m)
1/3

(
∆2

0

λ̃

)2/3
]

≈ 1

∆0

(
log

(
∆2

0

λ̃

)
− 1.53− log ξm

)
, m = 0, 1, 2, 3. (14)

5



0.23 0.24 0.25 0.26

-0.003

-0.002

-0.001

0.001

Phase II (gapped)

Phase III (gapped)

Phase I (uniform)

Phase IV (non-uniform)

F

Figure 2: Free energy vs ξ in the four phases. The gapped and non-uniform solutions
here are numerically evaluated. Since ξ is a monotonically increasing function of tem-
perature (see (10)), the uniform distribution (Phase I) is stable at low temperatures
and the gapped distribution (Phase III) is stable at higher temperature. A first order
phase transition between these two phases happens at ξ2.

Here Lambert’s W function is employed. In the second step we have assumed ∆2
0/λ̃ ≫

1 and ξm = O(1).
As we come down from β = ∞ (go up in temperature), there is a first order phase

transition at β2 from the centre symmetric phase (TrU = 0) to the broken symmetry
phase (TrU ̸= 0) at an inverse temperature

βcr ≡ β2 ≈
1

∆0

log

(
∆2

0

λ̃

)
. (15)

The Euclidean model (4) is symmetric under the interchange of (t, β) ↔ (x, L).
Hence, similarly to (15), we can deduce a phase transition in L from the TrV = 0
phase4 to TrV ̸= 0 (at large enough β) at a critical length Lcr = βcr. The existence of
a finite Lcr above confirms that the transition which we found at L → ∞ and β = βcr

between TrU = 0 and TrU ≠ 0 indeed happens in the TrV = 0 phase. Therefore the
expression for βcr is valid even at finite L as long as TrV = 0, since large N volume
independence [22, 23] ensures that gauge invariant quantities like the free energy and
vev of Wilson loop operators do not depend on L in the TrV = 0 phase. Thus, the
correct definition of ‘large L’ in this section is

L ≫ Lcr = βcr, (16)

which ensures that we are in the TrV = 0 phase. βcr is defined in (15).

4.2 The phase transition at small L

In this section, we discuss the phase structure of the effective action (11) for small
L (L ≪ Lcr). Phase transitions in the system (11) have been discussed in [2] in a

4We define V = exp (iLA1).
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different context. To see the phase structure, it is convenient to define the moments
of the eigenvalue density

ρ(θ) =
1

2π

∞∑
n=−∞

une
−inθ. (17)

We summarise the phase structures [5],

• β > βc1: The stable solution is given by un = 0 (n ≥ 1). The eigenvalues of A0

are distributed uniformly.

• βc1 > β > βc2: The stable solution is given by u1 ̸= 0, un = 0 (n ≥ 2). The
eigenvalue distribution is non-uniform and gapless.

• βc2 > β: The stable solution is given by un ̸= 0 (n ≥ 1). The eigenvalue
distribution is gapped.

• The phase transition at β = βc1 is of second order and the transition at β = βc2

is a third order (GWW type) transition.

Contrary to the case of large L, an intermediate non-uniform phase exists at small L.
The critical temperatures are calculated up to O(1/D) in [5] as

βc1λ̃
1/3
1 = log D̃

(
1 +

1

D̃

(
203

160
−

√
5

3

))
, (18)

βc2λ̃
1/3
1 − βc1λ̃

1/3
1

=
log D̃

D̃

[
−1

6
+

1

D̃

((
−499073

460800
+

203
√
5

480

)
log D̃ − 1127

√
5

1800
+

85051

76800

)]
, (19)

where D̃ = D + 1 and λ̃1 = (g′)2N(D + 1)/L. These critical temperatures have been
evaluated in numerical studies [10, 11, 16, 17] and our large D results agree with
them. See table 1.

In the β-L plane the transition lines appear as curves β ∝ L1/3 passing through the
origin. Since our analysis is valid only for L ≪ Lcr, we should trust these transition
lines only in that region, as we have depicted in figure 3. By using the β ↔ L
reflection symmetry, we can also infer phase transition lines for β ≪ βcr described by
L ∝ β1/3, as shown in figure 3.

We should mention that considerations in this section are valid up to λ̃′ ≲ λmax

where λmax = L/β3 for β ≪ βcr, and λmax = β/L3 for L ≪ Lcr [5], which can be
large close to the origin.
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4.3 Phases of 2d gauge theory on T 2

In the last two subsections, we have studied confinement/deconfinement type transi-
tions in the model (4) for large and small values of the spatial size L.

We have found that the nature of the transition depends on L. We can summarise
these results in figure 3, where we supplemented our calculations with the reflection
symmetry β ↔ L of the model.

Note that the gravity analysis [6, 12] and lattice study [7] indicate that the inter-
mediate phase structure is given by the middle joining pattern in figure 3.

β

L

?

un = 0
v
n
6= 0

un = 0
vn = 0

v
n
= 0

un 6= 0
un 6= 0
vn 6= 0

1st

2nd3rd

B1

B2

D1

D2

A

C

O

u
n
= 0 (n ≥ 2)

u1 6= 0

vn 6= 0

Figure 3: Phase structure of the 2d gauge theory at weak coupling. There are essen-
tially 4 phases characterized by non-zero values of various Wilson lines. The inner
region, with both Wilson lines non-zero, includes 2 additional phases in which the
eigenvalue distribution is gapless but non-uniform. The orders of the phase transitions
(1st, 2nd, 3rd) are indicated. Our analysis does not apply to the intermediate region
enclosed by the dotted lines. Possible connections between the phase boundaries
across this region are suggested in the inset (where boundaries of the intermediate
phases are omitted for simplicity). The gravity analysis and lattice studies conform
to the second pattern.

D=9 Tc1 Tc2 R2 F0

Numerical result 0.8761 0.905 2.291 6.695
1/D expansion 0.895 0.917 2.28 6.72
error 2% 1% 0.5% 0.3%

Table 1: Numerical analysis [16] vs. 1/D expansion [5] in D = 9 case. We have
evaluated the 1/D expansion up to O(1/D) and the errors are expected as O(1/D2) ∼
1/92 ∼ 1%. Indeed the 1/D expansion reproduces the numerical analysis in this order.
R2 and F0 in this table denote ⟨Y I2⟩ and free energy in the confinement phase.
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5 Conclusions

In this talk, we have shown the recent progress of the understanding of the thermo-
dynamics of the Yang-Mills theory on a torus. It may be valuable to compare our
results to other studies.

Comparison to dual gravity The construction of the gravity dual of the non-
supersymmetric gauge theory was proposed in [8]. Its finite temperature extension
was introduced in [9]. However, it turned out that a naive application of the con-
struction in [9] did not work in our model (2) because of an ambiguity of the fermion
boundary condition along the each cycle of the torus [6]. Furthermore a more serious
problem of the holography in the finite temperature case [9] exists even in a Yang-
Mills theory on a flat space [13, 14] and the resolution of this problem was proposed
in [14].

According to this resolution, we can compare the gravity and our results without
any ambiguity and confirmed that these two are consistent [6].

Comparison to lattice As mentioned in the Introduction, our model (4) can be
regarded as a dimensional reduction of a D + 2 dimensional pure Yang-Mills theory
compactified on a small TD. Since TD is small, WI = TrUI (I = d, · · · , d + D − 1)
must be non-zero. Therefore we can regard the phase structure in figure 3 as a part of
the D+2 dimensional pure Yang-Mills theory in theWI ̸= 0 phase. Such a Yang-Mills
theory on T 3 and T 4 have been studied in lattice gauge theory [7] and our results are
consistent with them.

Yang-Mills theory on sphere We showed that the order of the phase transition
of the Yang-Mills theory on a torus does depend on the size of the cycle. On the
hand, if we consider a weak coupling Yang-Mills theory on a sphere, the order of the
phase transition is 1st order in S3 case [3] and is 2nd+3rd order in S2 case similar to
the small L case [4]. These results show that the phase structure of Yang-Mills theory
is very rich. The understanding of the origin of these differences of the transitions
must be valuable.
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Discussion

M. Hanada: Is it possible to apply the 1/D expansion to d ≥ 3 case?

Morita: It may be possible to derive the effective action for the gauge field by
integrating out the D adjoint scalars through the 1/D expansion. However, the
analysis of this effective action must be very difficult.
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