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1 Introduction

The computation of anomalous dimensions of gauge invariant operators is a central
problem in non-abelian gauge theories. For example, they are related to the parton
distribution function in the DIS regime of QCD. Typically, one can compute such
quantities in perturbation theory at weak coupling. Solving this problem in the
strong coupling regime or even at finite values of the coupling has been a formidable
challenge and requires new insights. In the case of four-dimensional N = 4 super
Yang-Mills theory, this seemingly hopeless task can be attacked using the methods
of integrability and exploiting the holographic duality between gauge theories and
superstring theory [1].

In the planar limit of the gauge theory, the interplay between these two approaches
led eventually to the conjecture that the anomalous dimensions of all gauge invariant
operators can be computed at any value of the coupling, using the so called Y-
system [2]. By solving a complicated system of integral equations, one can numerically
estimate the strong coupling expansion coefficients of such conformal dimensions.
This conjecture has passed several checks, in particular in the sector of long gauge
invariant operators, constructed using an asymptotically large number of elementary
fields, both at weak and at strong coupling [1]. An extensive numerical study of the
Y-system has been carried out and compared to semi-classical techniques. However,
short non-protected operators, that constitute the most natural sector from the gauge
theory point of view, are hard to study and existing methods are not reliable in this
regime.

In this talk, we will report on a new method [3] to compute the anomalous dimen-
sions of operators in N = 4 super Yang-Mills theory at strong coupling, using the
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AdS/CFT correspondence. We will describe this new method as applied to short oper-
ators, that consist of a small number of elementary fields. The simplest non-protected
supermultiplet is the Konishi supermultiplet [4], whose anomalous dimension at weak
coupling was studied in [5].

According to the AdS/CFT correspondence, short operators at strong coupling are
dual to perturbative string states of type IIB superstring in the AdS5×S5 background
[6]. Conformal dimensions of field theory operators are equal to energies of such string
states. The conformal dimension of non-BPS operators, such as operators in the
Konishi multiplet, receive quantum corrections, whose evaluation at strong coupling
is the goal of this talk.

The way we will do this is “old-fashioned,” i.e.by quantizing the string worldsheet
theory. By imposing that the worldsheet string state satisfy the superstring physical
state condition at the loop level, we derive an equation for its energy, which gives
in turn the strong coupling expansion of the conformal dimension of the dual gauge
theory operator. We apply our method to the simplest non-BPS operator, a member
of the Konishi multiplet of string states, whose energy at strong coupling has been
predicted numerically in [2] using the Y-system. Our worldsheet computation of the
energy of a particular element gives the conformal dimension

∆−∆0 = 2
4
√
λ− 4 +

2
4
√
λ

+O(1/
√
λ) , (1)

where λ = g2
YMN is the ’t Hooft coupling. In weak coupling language, the classical

dimension ∆0 of different members of the Konishi multiplet may take different integer
values, but the anomalous dimension (1) is the same for all of them. Hence, we can
pick our favourite member of the multiplet to perform the calculation. The leading
term 2 4

√
λ reproduces the expected leading behaviour for an operator dual to a string

state at the first massive level. The last term 2/ 4
√
λ is the one-loop correction to

the string energy of the Konishi multiplet of string states at strong coupling. The
three terms in (1) confirm the numerical fit obtained using the Y-system in [2, 7] or
semi-classical methods [8].

Our method can be used to solve for the whole energy spectrum of massive states
of type IIB superstring in AdS5×S5 and can be expanded to any loop order at strong
coupling. This will give an expansion of the conformal dimensions of short operators
in super Yang-Mills theory in inverse powers of 4

√
λ.

2 Motivations

Our goal is to compute anomalous dimensions in a strongly coupled gauge theory. We
will be concerned with local gauge invariant operators O(x). Our favorite example is
the simples four-dimensional gauge theory, namely N = 4 super-Yang Mills theory
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(SYM) with gauge group SU(N). The field content of this theory is the N = 4 vector
super-multiplet, consisting of a gauge field, four gauginos and six real scalars φi, for
i = 1, . . . , 6. An example of a local gauge invariant operator is O(x) = Trφiφi(x),
where the trace is over the color indices. This SYM is a superconformal field theory,
which includes among its global symmetries the invariance under dilations. The
dilation operator D acts on local gauge invariant operators in the following way

[D,O(x)] = i∆O(x) .

The real dilation eigenvalue ∆ is the conformal dimension of the operator O(x).
The conformal dimension determines the two-point function of the operator with its
adjoint. In a conformal field theory (CFT), a useful representation for the two-point
correlation function is the OPE when two operators get close to each other

〈O(x)O†(y)〉 ∼ 1

|x− y|2∆
.

Therefore, knowledge of the conformal dimensions of all local operators is equivalent
to solving for the spectrum of the CFT. The natural question arises: What do we
know about conformal dimensions? We will answer this question in the planar limit
N → ∞ of very large number of colors. We will restrict ourselves to this regime for
the rest of the talk.

At the classical level, when the gauge coupling gYM = 0, the conformal dimensions
are equal to the engineering dimensions ∆0, i.e.the canonical dimensions we can read
from the lagrangian ∆ = ∆0. For example, the operator Trφiφi has ∆0 = 2.

Let us turn on the ’t Hooft coupling λ = g2
YMN . Quantum corrections get into

play and in general will shift the conformal dimensions from their classical values,
generating non-zero anomalous dimensions ∆ − ∆0 6= 0. What do we know about
anomalous dimensions? At small ’t Hooft coupling λ << 1, known as the weak
coupling regime, we can compute the anomalous dimensions perturbatively. This is
going to give us the usual planar loop expansion

∆−∆0 = c1λ+ c2λ
2 + . . . ,

where c1 and c2 are the one- and two-loop coefficients. This perturbative computation
is a standard QFT technique and it has been carried out to very high orders in our
favorite superconformal field theory. So far, so good.

What happens when the coupling becomes very large λ >> 1, i.e. in the strong
coupling regime? We can classify the behavior of local operators at strong coupling
as follows. The BPS operators are protected and their conformal dimensions do not
receive quantum corrections. The non-BPS operators receive corrections

protected (BPS): ∆−∆0 = 0

short non-BPS: ∆−∆0 ∼ 4
√
λ+ . . .

long non-BPS: ∆−∆0 ∼
√
λ+ . . .
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Figure 1: Artistic rendering of the strong coupling regime: λ >> 1.

Short operators are made out of traces of a small number of elementary fields, like
Trφiφi. Long operators contain a very long trace, where the number of elementary
fields scale like

√
λ. The “. . .” in the previous list stand for quantum corrections at

strong coupling, that vanish in the limit λ→∞. How can we evaluate the quantum
corrections “. . .” in this regime? We had better use holography.

According to the AdS/CFT correspondence [6], N = 4 four-dimensional SYM
theory is equivalent to type IIB superstring theory on the five-dimensional Anti-de
Sitter space times the five-sphere. The basic dictionary of the correspondence is
summarized in Table 1. According to the correspondence, BPS operators correspond
on the gravity side to the supergravity modes. Non-protected operators, on the
other hand, are genuinely stringy objects. Short non-BPS operators are described by
quantum strings, what we would call perturbative massive string states in the usual
flat ten-dimensional description of the string. Long non-BPS operators correspond to
semi-classical (i.e. solitonic) strings, namely strings whose energy scales like

√
λ.

Since the field theory conformal dimensions ∆ correspond to the energies E of
strings propagating inside the AdS space, according to the correspondence in Table 1,
we can obtain the quantum corrections to conformal dimensions at strong coupling by
simply computing the spectrum of string states in AdS, in an perturbative expansion
around the flat-space limit (the small curvature limit)

E = c0
4
√
λ+ c1 +

c2
4
√
λ

+O(1/
√
λ) .

3 String theory in Anti-de Sitter space

In order to carry out the program outlined above, we need to introduce the worldsheet
theory of strings on an AdS background (for a comprehensive review, see [9]). The
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gauge side gravity side

strongly coupled CFT = perturbative string theory
N = 4 SYM = IIB string theory on AdS5 × S5
√
λ = radius2/α′

λ >> 1 = small curvature
CFT conformal dim. ∆ = E energy in AdS

Table 1: The AdS/CFT dictionary.

AdS5×S5 background is described by the supercoset PSU(2, 2|4)/SO(1, 4)×SO(5).
A coset representative g transforms as g → g0gh under global g0 and local h trans-
formations. Superstring propagation in this background is described in terms of a
worldsheet non-linear sigma model with values in such a supercoset. Since we want
to keep covariance manifest, we will make use of the pure spinor action for the super-
string in the AdS background (we follow the notations in [9])

S =

√
λ

2π

∫
Str[

1

2
J2J2 +

3

4
J3J1 +

1

4
J1J3 + w∇l + w∇l −NN ] , (2)

where the worldsheet metric is in the conformal gauge. The matter sector of the
pure spinor action is constructed in terms of the left-invariant currents J = g−1dg =∑4
i=1 Ji, which take values in the super-Lie algebra psu(2, 2|4). This algebra admits a

Z4 grading, that we used to label the currents Ji. The grading zero part of the current
describes the gauge degrees of freedom in the supercoset, namely the local Lorentz
rotations, while the even J2 and the odd J1, J3 describe respectively the ten bosonic
and thirty-two fermionic directions of AdS5 × S5. In addition, the action contains a
couple of pure spinor ghosts l, l of grading one and three respectively, which satisfy
the pure spinor constraint {l, l} = 0 = {l, l}, and their conjugate momenta w,w. N
and N are the Lorentz generators in the ghost sector. The pure spinor BRST charge
is Q =

∮
dσ Str[lJ3 + lJ1] and it is nilpotent on the pure spinor constraint, up to a

gauge transformation. Physical states |V 〉 are in the cohomology of the BRST charge
and satisfy the Virasoro constraint (T + T )|V 〉 = 0, where T and T are the left- and
right-moving components of the worldsheet stress tensor.

The massless sector of type IIB superstring in AdS is described in terms of uninte-
grated vertex operators of ghost number (1, 1) and weight zero, that are in one-to-one
correspondence with the type IIB supergravity spectrum in AdS5 × S5 [10]. In order
to study the massive string spectrum, we will expand the sigma model around a clas-
sical string configuration, describing a point-like string sitting at the center of AdS
in Fig. 2. This is analogous to the usual flat space bosonic string theory, where one
expands around the vacuum with momentum k, with wavefunction eikX . Using the

5



Figure 2: Artistic rendering of a pointlike string sitting at the center of AdS in global
coordinates.

metric of AdS in Lorentzian global coordinates ds2 = − cosh2 ρ dt2 +dρ2 +sinh2 ρ dS2
3 ,

our string configuration sits at ρ ∼ 0 and evolves in time as eiEt. In the static gauge,
this is described by the coset element

g̃(σ, τ) = exp[−τET/
√
λ] , (3)

that solves the worldsheet equations of motion coming from the action (2), where T is
the anti-hermitian PSU(2, 2|4) generator corresponding to the AdS time translations
and τ is the worldsheet time. The only non-vanishing left-invariant current in this
background is J̃τ = g̃−1∂τ g̃ = −ET/

√
λ. Hence, such classical configuration has

vanishing BRST charge.
The Noether charge for the global PSU(2, 2|4) symmetry of the string sigma

model is given by QPSU =
∮
dσ jτ , where

jτ =

√
λ

2π
g[J1 + J2 + J3 +N +N ]τg

−1 . (4)
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In particular, the AdS energy operator E evaluated on the string configuration (3)
gives

E =
∮
dσ StrTj̃τ = E , (5)

where we used Str(TT) = −1. Since we consider positive energy configurations, we
can take E to be positive in the following. The classical Virasoro constraint for such
configuration reads

T + T =

√
λ

2
Str J̃τ J̃τ = − E2

2
√
λ
. (6)

The classical Virasoro constraint (6) will be modified by quantum effects, which are
going to allow for a non-zero solution for E in the rest of the paper. Since for massive
string states, such as the one we are considering, the energy scales as E ∼ 4

√
λ, the

classical contribution to (6) is of order one and may be canceled against quantum
effects.

4 Quantization

Let us quantize the action (2) around the classical configuration (3) using the back-
ground field method [9]. We parameterize the coset element by g = g̃eX , where

X = tT +XAPA + ΦJ +XIPI + ΘaQa + ΘȧQȧ + Θ̂aQ̂a + Θ̂ȧQ̂ȧ , (7)

are the quantum fluctuations and g̃ is given in (3). We chose a coset gauge in which
the grading zero part of the fluctuations vanishes. The left invariant currents are

Jτ = e−X(∂τ − ET/
√
λ)eX , Jσ = e−X∂σe

X . (8)

By expanding the action (2) up to quadratic order and using the psu(2, 2|4) structure
constants, we can read the spectrum of fluctuations around the background (3). The
quadratic part of the action for the fluctuations is

S =

√
λ

2π

∫ [
−∂t∂t+ ∂J∂J + δIJ∂X

I∂XJ + δAB

∂XA∂XB +

(
E

2
√
λ

)2

XAXB



+Πab∂Θ̂a∂Θb + Πȧḃ∂Θ̂ȧ∂Θḃ − E

4
√
λ

[
δab(Θ

a∂Θb + Θ̂a∂Θ̂b) + δȧḃ(Θ
ȧ∂Θḃ + Θ̂ȧ∂Θ̂ḃ)

]
+wa∂l

a + wȧ∂l
ȧ + ŵa∂l̂

a + ŵȧ∂l̂
ȧ
]

TheAdS5 time direction as well as the five sphere directions remain massless, while the
remaining four bosonic directions of AdS5 acquire a mass squared m2

X = (E/
√
λ)2.

The fermionic spectrum consists of sixteen massless fermions and sixteen massive
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fermions with mass squared m2
Θ = (E/2

√
λ)2. The ghosts remain massless. There is

no relation between the bosonic and fermionic spectrum, reflecting the fact that this
background is not BPS.

We can canonically quantize the theory imposing the usual equal time commu-
tation relations for the coordinates and their conjugate momenta. The equations of
motion of some of the fluctuations are

∂∂XA +m2
XX

A = 0 ,

∂∂Θ +mΘΠ∂Θ̂ = 0 ,

∂∂Θ̂−mΘΠ∂Θ = 0 . (9)

Their mode expansion is

Θ = Θ0 sinmΘτ − ΠΘ̂0 cosmΘτ

+
∑
n6=0 cΘ,n

(
imΘ

ωΘ,n+kn
ϕ1

Θ,nΘn − ϕ2
Θ,nΠΘ̂n

)
+
∑
n ϑne

−in(τ−σ) ,

Θ̂ = Θ̂0 sinmΘτ + ΠΘ0 cosmΘτ

+
∑
n6=0 cΘ,n

(
imΘ

ωΘ,n+kn
ϕ2

Θ,nΘ̂n + ϕ1
Θ,nΠΘn

)
+
∑
n ϑ̂ne

−in(τ+σ) ,

XA = xA0 cosmXτ + pA0 m
−1
X sinmXτ + i

∑
n6=0

1
ωX,n

(
ϕ1
X,nα

1A
n + ϕ2

X,nα
2A
n

)
,

where, for s = (Θ, X), we defined

ϕ1
s,n = exp[−i(ωs,nτ − kn)̃] , ϕ2

s,n = exp[−i(ωs,nτ + kn)̃] ,

ωs,n =
√
m2
s + k2

n n > 0 ; ωs,n = −
√
m2
s + k2

n n < 0 ,

kn = 2πn , cs,n =
(
1 + (ωs,n − kn)2/m2

s

)−1/2
,

We can now compute the conjugate momenta PΘ = δS
δ∂τΘ

and PX = δS
δ∂τX

, and impose
equal time commutation relations between coordinates and momenta [PX(σ), X(σ′)] =
−iδ(σ − σ′) and {PΘ(σ),Θ(σ′)} = −iδ(σ − σ′), by which we derive the commutation
relations of the modes. In particular, the zero modes of the fermions have commuta-
tion relations

{Θ0,Θ0} = − 1

mΘ

= {Θ̂0, Θ̂0} , {Θ0, Θ̂0} = 0 . (10)

Our vacuum state |E〉 is a scalar and is annihilated by all positive modes, including
the zero modes of w,w. This last requirement ensures that the Lorentz generators
for the ghosts N and N annihilate the vacuum. We can choose sixteen fermionic zero
modes as creation operators. Since we are using global AdS coordinates, these are
linear combinations of supercharges and superconformal transformations. In the rest
of the paper, we will evaluate the leading quantum contributions to the physical state
condition T + T = 0, applied to a particular vertex operator to be introduced below.
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The first quantum correction to (6) comes from the central charge. Even if for
E = 0, namely in empty AdS, the central charge vanishes [11], there is a normal
ordering contribution coming from the quadratic part of the stress tensor when E 6= 0.
This is given by the sum of the energies of the oscillator modes

2E√
λ

+
1

2

∞∑
n=1

(
6
√
n2 + 4

√
n2 + (E/

√
λ)2 − 16

√
n2 − 16

√
n2 + (E/2

√
λ)2 + 22

√
n2
)
.(11)

The first term is the contribution from the zero modes of the bosons; by looking
at the commutation relations of the fermionic zero modes, one can easily see that
they do not contribute to (11). Inside the sum, the first two terms come from the
bosonic oscillators, the second two terms from the fermionic ones and the last term
from the ghosts. We have not computed the precise value of E yet, but we want
it to correspond to a stringy state, whose energy scales as E ∼ 4

√
λ, which gives

E/
√
λ ∼ 1/ 4

√
λ � 1, obtaining from (11) the total contribution 2 E√

λ
− 3

16
ζ(3)( E√

λ
)4.

We can drop the second term as it does not contribute to the energy at the order we
are considering, so we are left with the contribution

2E/
√
λ . (12)

Note that at order ( E√
λ
)2 the four massive bosonic modes cancel with the massive

sixteen fermionic modes. The contribution 2 E√
λ
, which would vanish in a BPS back-

ground, will affect the one-loop correction to the energy of the string, contributing to
the last term in (1).

Let us consider now a specific worldsheet state. All of the members of the Konishi
multiplet have the same anomalous dimension (in the weak coupling sense) and they
are in one to one correspondence with the string states at the first massive level. Thus
we will choose a particularly simple state in the first massive string level, that will
simplify the computation. Physical states are given by unintegrated vertex operators
of ghost number (1, 1). The simplest one is Str ll and it corresponds to the radius
modulus at zero momentum [12]. We will denote the corresponding state as |ll〉 ≡
Str(ll)|0〉. We choose the simple state

|V 〉 = x+
−1x

+
−1|ll〉 , (13)

where x+
−1 and x+

−1 are the first left- and right-moving oscillators coming from the
fluctuations of the AdS “space-cone” coordinate x+ = x1 + ix2. Although it does
not look covariant, we can interpret this state as being created by non-zero modes of
the global symmetry right invariant currents. We should emphasize that this is not a
global PSU(2, 2|4) transformation. We identify the state (13) as a particular member
of the Konishi multiplet of string states with classical dimension ∆0 = 6 at weak
coupling, Lorentz spin two and singlet of SU(4). The operator |ll〉, corresponding to
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the radius changing operator, is dual to the Yang-Mills lagrangian and it has ∆0 = 4,
so it is natural to expect that (13) has two units more of classical dimension. The same
type of state was discussed in [12], where it is argued that such states are physical,
i.e. they are annihilated by the BRST charge. This state is created by acting on the
vacuum with two oscillators of mass E/

√
λ, whose contribution to the physical state

condition is

2
√

1 + (E/
√
λ)2 . (14)

5 Quartic corrections

Other possible contributions to the physical state condition at this order may come
from the terms in the stress tensor T + T , expanded to quartic order in fluctuations
around the classical background (3) and acting on the specific state (13). Let us
analyze the possible terms.

The factor of 2 in front of the square root in (14) may get corrected by quartic
terms in T + T of the form (∂X)2X2, due to normal ordering. However, there is no
normal ordering due to this term. This comes from the fact that any correction to
this term has to be proportional to the one-loop beta function, which vanishes [13].
The same type of normal ordering contribution was discussed in [14], where they
argued it should be zero using PSU(2, 2|4) symmetry (the same reason why the beta
function vanishes). There are other corrections that are not protected by the beta
function argument, but they are of the form (E/

√
λ)∂XX3 and (E/

√
λ)2X4. They

give higher order contributions to the energy and we can safely neglect them.
The last possible contribution comes from the fact that the operator (13) might

mix with other operators due to quartic terms in T +T . In order to study the mixing,
we have to compute the momenta conjugate to the fields up to quartic terms in the
action, then plug these back in the stress tensor. The conjugate momenta are

Pi =
δS

δ∂τXi

= ∂τXi + . . . (15)

where ’. . .’ are higher order terms in the fluctuations Xi. In this way we eliminate all
the time derivatives in the stress tensor. For the particular state (13) we may only
consider the terms with four bosonic or two bosonic and two fermionic fields. Terms
quartic in bosons can both introduce mixing and also correct the energy of our state.
Terms with two fermions and two bosons will only give mixing. For the particular
choice of the “space-cone” polarization in (13), it is easy to see that there will be no
mixing with other bosonic states, nor mixing with states created by two fermions,
since the stress tensor will only have commutators and products of gamma matrices,
which vanish for this choice of polarization. Another way to see this is to note that
since T + T is a scalar only terms that match the spin of out initial state can mix
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with it. However, there is a non-vanishing correction to the physical state condition,
proportional to the state itself, coming from the term 1

6
(Str [P2, X2]2−Str [∂σX2, X2]2)

in the stress tensor. Expanding T + T into modes and computing the relevant terms
one finds that the corresponding correction is (it coincides with the result in [14])

−2/
√
λ . (16)

6 Conformal dimension

Summing up the contributions (6), (12), (14), and (16) to the Virasoro constraint,
we find that the physical state condition (T + T )|V 〉 = 0 reads

−E(E − 4)

2
√
λ

+ 2

√
1 + (

E√
λ

)2 − 2√
λ

= 0 . (17)

The positive energy solution of this equation gives the energy of our string state (13).
According to the AdS/CFT dictionary, the energy operator on the string side of the
correspondence is mapped to the dilatation operator on the field theory side, whose
eigenvalues are the conformal dimensions of operators. Above, we identified the field
theory dual to the string state (13) as a member of the Konishi multiplet with classical
dimension ∆0 = 6, Lorentz spin two and singlet of SU(4). Its conformal dimension
at strong coupling is therefore

∆ = E = 2
4
√
λ+ 2 +

2
4
√
λ

+O(λ−1/2). (18)

Hence we derived (1) with ∆0 = 6.

LM would like to thank Chung-I Tan and the organizers of the XI Workshop on
Nonperturbative QCD in Paris for the invitation and the wonderful atmosphere. The
artwork in Fig. 1 and Fig. 2 is courtesy of Miriam W. Carothers.
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