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1 Introduction

In this contribution, we summarize the results published in Lilley et al. [1] and pre-
sented at the 11th workshop on nonperturbative QCD as a transverse topic. We begin
with a very brief overview of standard inflationary cosmology and then motivate the
study of singularity-free cosmologies. We then introduce a cosmological scenario in
which inflation is preceded by a bounce. In this scenario, the primordial singularity,
one of the major shortcomings of inflation, is replaced by a non-singular bounce, prior
to which the universe undergoes a phase of contraction. We give a detailed study of
the transfer through the bounce of cosmological perturbations sourcing today’s large
scale structure. We show that the bouncing phase induces oscillations superimposed
on the nearly scale-invariant primordial spectra for cosmological perturbations. We
discuss the effects of these oscillations in the cosmic microwave background and in
the power spectrum of matter in the universe. We propose a new way to indirectly
measure the spatial curvature energy density parameter in the context of this model.

2 Current Status

Measurements of the abundance of light elements (such as Helium 3 and 4, Deuterium
and Lithium 7), as well as results obtained from baryonic oscillations through cosmic
microwave background (CMB) measurements are consistent with our present under-
standing of nucleosynthesis and baryogenesis in the framework of the standard Big
Bang model (an expanding universe with a radiation–dominated epoch followed by a
matter–dominated epoch) and consistent with abundances of baryons in the universe
at the few % level.

Structure formation, rotation curves of galaxies, the Sachs-Wolfe plateau in the
(CMB), the spectrum of luminous matter in the universe, gravitational lensing effects
provide evidence for the existence of dark matter in the universe and are consistent
with the presence of some form of dark matter at the 20% level.
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Current observations of supernovae luminosities as a function of redshift providing
measurements of the Hubble parameter and the deceleration parameter of the universe
indicate that the expansion of the universe is accelerating and can be explained by
postulating the existence of some form of dark energy making up perhaps 75% of the
energy content of the observable universe.

The COBE satellite has shown that the universe has a homogeneous and isotropic
blackbody spectrum with temperature T = 2.73 K up to 1 part in 105 while the
position of the first accoustic peak in the CMB is consistent with a spatially flat
universe. This observed flatness, isotropy and homogeneity, as well as the absence
of magnetic monopoles in the universe although unexplained in the framework of
the standard Big Bang model, are easily resolved by invoking a primordial epoch of
inflation [4], a framework that incorporates dark matter and also explains the origin
of today’s CMB anisotropies and large scale structure with compelling naturalness
and ease.

The overall picture provided by inflation, dark matter, dark energy, and post–
inflationary standard Big Bang cosmology nevertheless falls short at very early cos-
mological times. This is because the usual models of inflation are not past complete
and inevitably contain a time-like singularity in the past at which the universe is of
vanishing size. It is however known that theories with higher order curvature terms in
the Einstein-Hilbert action, non-minimal coupling of matter fields to gravity and the
low energy effective actions of some string theories do allow for non-singular cosmo-
logical background solutions. In these, instead of shrinking to zero size, the universe
experiences a bounce: starting out large, the universe undergoes a contracting phase
until it reaches a finite minimal size, after which an expanding phase occurs. The
existence of bouncing solutions in these high energy effective theories warrants the
study of simpler classical non-singular cosmological models, in which background and
perturbations are completely understood and tractable. This simpler class includes
models with minimally coupled scalar fields, scalar fields with non-standard kinetic
terms or in geometries that depart from the Friedmann-Lemâıtre-Robertson-Walker
(FLRW) geometry, i.e.Bianchi or Kantowski-Sachs spacetimes. Another possibility is
to consider unconventional forms of matter, or a combination of radiation and scalar
field matter.

Although bouncing cosmologies have most often been discussed as alternatives to
inflation, here we shall see both the contracting and the non-singular bouncing phase
as cosmological epochs that connect to inflation. In the model we describe below,
the cosmological singularity is replaced by a classical bounce which can entirely be
described within General Relativity (GR), and after which inflation takes place as
usual. We will mostly focus, for computational simplicity, on a symmetric bounce,
meaning that the rate of contraction (up to a minus sign) and its duration are the
same as in the inflationary phase that follows. The transition to standard Big Bang
cosmology after inflation through a phase of reheating remains unchanged from the
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standard case without bounce.
The model studied relies on a dynamical scalar field with a symmetric potential

of the small field type and a positive spatial curvature term. This is the minimal
possible setup in order to obtain a bounce but violate the least number of energy
conditions derived from the Hawking–Penrose singularity theorems.

3 The model

We consider a homogeneous and isotropic FLRW universe with line element

ds2 = a2 (η)

[
−dη2 +

dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (1)

where a(η) is the scale factor as a function of conformal time η [where dη = dt/a,
with t the cosmic time; below we shall use the notation X ′ ≡ dX/dη, for any function
X(η)]. The constant parameter K describes the curvature of spatial sections and can
always be rescaled such that K = 0, ±1. In order to achieve a bounce with a simple
scalar field and avoid breaking the null energy condition (ρ+ P ≥ 0), it is necessary
that K = +1. The simplest renormalizable potential that satisfies the conditions
needed for a bounce with positive spatial curvature and which is bounded from below
reads

V (ϕ) = M4

[
1−

(
ϕ

µ

)2
]2

, (2)

with M and µ a priori free parameters.
We now study the evolution of cosmological perturbations around the homoge-

neous and isotropic background cosmology described by Eqs. (1) and (2), and by the
Einstein equations and the conservation equation for ϕ . We mainly consider the
scalar part of the metric perturbations (given by the gauge invariant gravitational
Bardeen potential Φ) in the presence of scalar field perturbations δϕ but the result
for tensor perturbations can be obtained with the same procedure. In longitudinal
gauge, the scalar part of the perturbed metric reads

ds2 = a2 (η)
[
− (1 + 2Φ) dη2 + (1− 2Φ) γ

(3)
ij dxidxj

]
, (3)

where γ
(3)
ij is the background metric of the spatial sections. Expressing the scalar

parts of the perturbed Einstein equations in terms of Φ and the density perturba-
tion variable δϕ and combining them in the appropriate way yields a second order
differential equation for the modes Φk expressible through the following change of
variables [5]

Φ =
κ

2
(ρ+ P )1/2u =

κ

2

ϕ′

a
u, (4)
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as
u′′k +

[
k2 − Vu(η)

]
uk = 0. (5)

The wavenumber k is the eigenvalue of the Laplace-Beltrami operator on positively
curved spatial sections. It is therefore a function of an integer n, and is given by
k =

√
n (n+ 2) with n = 0 and n = 1 corresponding to gauge modes. The potential

Vu(η) is given by

Vu(η) =
θ′′

θ
+ 3K

(
1− c2

s

)
(6)

with

θ =

(
3

κ

)1/2 H
aϕ′

and c2
s =

δP

δρ
= −1

3

(
1 + 2

ϕ′′

Hϕ′

)
. (7)

The quantity cs can in some regimes be interpreted as the velocity of sound.

In regions of vanishing spatial curvature (away from the high curvature bouncing
region) the variable u is related to the canonical variable v in terms of which the
theory can be quantized [5] by the relation (expressed in terms of the Fourier modes
of uk and vk)

vk =

(
3

κ

)1/2

θ
(uk
θ

)′
and k2uk = −z

(vk
z

)′
. (8)

Once the theory is quantized, the vk(η)’s and v∗k(η)’s are the mode functions of the
creation and annihilation operators, and it is in terms of those mode functions that
the initial conditions for the evolution of quantum modes are given.

Contrary to u which is well-defined everywhere, v is only well-defined in regions
of vanishing spatial curvature. Using the relations linking u and v, it is possible to
prepare an initial quantum state by choosing the mode functions vk of the variable v
in the regions η < 0 where modes are sub-Hubble and spatial curvature is negligible
but study the evolution of cosmological perturbations through the entire bouncing
phase using u. The resulting form of u after the bounce can then be used to determine
the form of the modes vk at the onset of inflation and then compute the primordial
spectrum of scalar perturbations.

Let us now restrict the analysis to the case of a symmetric bounce and consider
the evolution of the variable u in the contracting phase, at the bounce and in the
inflationary phase. The potential can very well approximated by neglecting the contri-
bution from the spatial curvature term, neglecting the time dependence of the horizon
flow functions, and joining a slow-roll exponentially contracting phase directly to a
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slow-roll inflationary phase1. The expression for the potential then simplifies to

Vu(η) = H2
(
ε1 +

ε2
2

)
=

1

x2
±

(
ε1 +

ε2
2

)
, (9)

where we have used the expression

H±(η) = − 1 + ε1
η − η±

= ±1 + ε1
x±

. (10)

In the last step, we defined x± = |η − η±|, where the “−” or the “+” sign is chosen
according to whether one considers times η before or after the bounce at η = 0. Up
to first order in slow roll, the equation of motion for u therefore simply reads

u′′ +

[
k2 − 1

x2
±

(
ε1 +

ε2
2

)]
u = 0 , (11)

where the subscript k on the mode function u is implicit. We now consider Eq. (11)
separately in the two eras before and after the bounce, where the solutions for u take
the form of Hankel functions of the first and second kind H

(1)
ν and H

(2)
ν . We can write

the solutions explicitly as

u−(η) =
√
kx−

[
U−1 (k)H(1)

ν (kx−) + U−2 (k)H(2)
ν (kx−)

]
, (12)

u+(η) =
√
kx+

[
U+

1 (k)H(1)
ν (kx+) + U+

2 (k)H(2)
ν (kx+)

]
, (13)

where the order ν of the Hankel functions (equal before and after the bounce) is given
by

ν =
1

2
+ ε1 +

ε2
2
, (14)

and where as before

x− = |η − η−| = η − η− , x+ = |η − η+| = η+ − η . (15)

These two solutions (and their derivatives) can be matched at the time of the bounce
η = 0 using the standard procedure. Doing so and expanding the Hankel functions
for large values of |kx±| (that is, for η ' 0), one obtains

U+
1 = U−2 (σk + i) e−i(k∆η−πν), (16)

U+
2 = U−1 (σk − i) ei(k∆η−πν), (17)

where we retain only the leading order terms and where we have defined the parameter

σk =
2ε1 + ε2
k∆η

(18)

1Slow roll inflation occurs when ε1 = 1 − H′/H2 � 1 and εi+1 = d ln |εi|/dN � 1, with i ≥ 1,
H = a′/a the Hubble parameter, and N = ln(a/aini) the number of e-foldings of expansion.
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and rewritten the conformal time difference as

∆η = η+ − η− . (19)

Now the equation of motion for v in regions of vanishing spatial curvature is given by

v′′ +

[
k2 − 1

x2
±

(
2 + 3ε1 +

3ε2
2

)]
v = 0 , (20)

where the subscript k on v is implicit. The solutions of Eq. (20) are given by

v−(η) =
√
kx−

[
V −1 H

(1)
% (kx−) + V −2 H

(2)
% (kx−)

]
, (21)

v+(η) =
√
kx+

[
V +

1 H
(1)
% (kx+) + V +

2 H
(2)
% (kx+)

]
, (22)

where % = ν + 1 with ν defined in Eq. (14). From the relations in Eqs. (8) between
u and v, and using Eqs. (12), (13), (21) and (22), one finds

U±i = ±
(κ

3

)1/2

k−1V ±i , (23)

so that the coefficients of v− and v+ are simply related by

V +
1 (k) = V −2 (k) (σk + i) e−i(k∆η−π%) , (24)

V +
2 (k) = V −1 (k) (σk − i) ei(k∆η−π%) . (25)

Let us now quantize v in the allowed vanishing spatial curvature regions on either side
of the bouncing phase. The consistency of v with the commutation relations required
for quantization is ensured provided v satisfies the Wronskian condition

(v)′ v∗ − (v∗)′ v = i . (26)

This imposes

|V ±1 |2 − |V ±2 |2 = ∓π
4
k−1 (27)

on the coefficients of the Hankel functions in Eqs. (21) and (22). Let us now assume,
for definiteness, that V −1 and V −2 can be parameterized as

V −1 =

√
π

2
ς1 k

−α/2eiθ1 and V −2 =

√
π

2
ς2 k

−β/2eiθ2 , (28)

where ς1, ς2 ∈ R and positive, α and β are numbers while θ1 and θ2 are phase angles.
Given Eq. (28), one finds from Eq. (27) that

ς2
2k
−β = ς2

1k
−α − k−1 . (29)
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In order to satisfy Eq. (29), one has to choose α = β = 1 and hence ς2
2 = ς2

1 − 1.
Dropping the subscript on ς1 so that ς1 → ς, one finally has

V −1 =

√
π

2
|ς| k−1/2eiθ1 and V −2 =

√
π

2

∣∣1− ς2
∣∣1/2 k−1/2eiθ2 , (30)

where we have absorbed the choice of sign in going from |V −1 |2 and |V −2 |2 to V −1 and
V −2 into the phases θ1 and θ2. Additionally, it can be checked using Eqs. (24) and
(25) that for η > 0 the normalization condition is verified up to first order in slow
roll,

|V +
1 |2 − |V +

2 |2 = −π
4
k−1

(
1 + σ2

k

)
. (31)

where σ2
k is second order in slow roll, as can be checked from Eq. (18).

The initial conditions for v− at times η < 0 have a simple interpretation. They
represent, through the phases θ1 and θ2 and through the amplitude parameter ς,
a deviation from the vacuum state, which can be recovered provided ς = 1 and
θ1 = (π/2)% + π/4. Furthermore, provided one does choose to start with vacuum
initial conditions, it can be seen from Eqs (24) and (25) that v+ is given by a single
mode function. Consequently, in this case and at first order in slow roll, we can expect
to recover the standard form of the primordial spectrum of scalar fluctuations.

Let us now use the late time (super-Hubble) behaviour of v+ to compute the
primordial spectrum of scalar perturbations in the expanding phase, Pζ , where, in
the subscript, the variable ζ = v/z is the curvature perturbation in the comoving
gauge. The spectrum Pζ is given by the usual expression [6]

Pζ =
k3

2π2
|ζ|2 =

k3

2π2

∣∣∣∣v+

z

∣∣∣∣2 . (32)

computed on super-Hubble scales, i.e.in the limit kx+ � 1. It is convenient to split
the explicit expression for Pζ into a first standard (tilt) part Pstd

ζ and a second part
Posc
ζ , which will be seen to be oscillatory in k. Doing so, one finds

Pstd
ζ '

H2
p

m2
Pl
πε1 p

{
1−

[
2(1 + C)ε1 p + Cε2 p + (2ε1 p + ε2 p) ln

(
k

kp

)]}
, (33)

and

Posc
ζ ' ς2 +

∣∣1− ς2
∣∣− 2ς

∣∣1− ς2
∣∣1/2 × (34)

[cos (2k∆η + θ1 − θ2) + π (2ε1 p + ε2 p) sin (2k∆η + θ1 − θ2)] .

where C = γE + ln 2 − 2 and γE is Euler’s constant, and where the εip and Hp are
evaluated at the pivot scale kp, defined as the logarithmic mean of the observable range
of spatial scales on the CMB sky. The quantity ∆η = |η+ − η−| is the characteristic
conformal timescale of the bounce and can be seen to set the frequency of oscillations,
while ς set their amplitude. A similar can be obtained for tensor perturbations using
the same procedure as outlined above.
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4 Observables

The scalar multipole moments Cs
` are related to the two–point function of CMB tem-

perature fluctuations on the sky. For a spatial curvature contribution to the energy
content of the universe |ΩK| � 1 and for ` . 10 but for K = +1, the scalar multipole
moments Cs

` can be related to the primordial scalar curvature perturbation spectrum
Pζ by

C` =
2π2

25

∞∑
n=2

PζMn

∣∣∣P−1/2−`
−1/2+n [cos (χ)]

∣∣∣2
n (n+ 1) (n+ 2) sin (χ)

, (35)

with

Mn =


∏̀
i=0

(i+ 1)2 − n2 for ` ≤ n

0 for ` > n

and where P
−1/2−`
−1/2+n are the associated Legendre polynomials while χ = η0 − ηlss '

`H/a0 =
√
|ΩK| is the (conformal) radial distance to the last scattering surface, with

η0 and ηlss, the conformal times today and at the time of last scattering, respectively.
With the exception that the integral over k should be replaced by a sum over n, the
textbook expression used in the case K = 0, is a very good approximation to Eq. (4)
for |ΩK| � 1. The expression for the scalar C`’s can also be carried over to the case
of the C`’s for tensor perturbations.

The presence of the slowly oscillating sinusoidal functions in Pζ introduces an
oscillation in the kernel of the sum in Eq. (4). In particular, one can in general ex-

pect constructive or destructive interference between the oscillations of the P
−1/2−`
−1/2+n’s

having as a characteristic scale χ with the oscillations of the cosine and sine terms in
Pζ of characteristic frequency 2∆η. Summed over n, this induces slow oscillations in
the C`’s at small ` values. The precise shape and locations of the deviations from the
standard C`’s induced by the oscillations depend on ΩK via χ and on ∆η while their
amplitude depends on ς.

In Figure 1, we present the results of a numerical simulation using the publically
CAMB code. The quantities shown in the dashed red and full blue lines are defined by

∆C` = CTHEORY
` − CWMAP

` (36)

where the theoretical C`’s are the C`’s obtained, respectively, either from an inflation-
ary cosmology or from the bouncing cosmology described in this paper. The error
bars are the WMAP error bars for the measured C`’s. The ∆C`’s were computed for
ς = 1.01, 1.1 and 1.2 and for increasing ∆η. These results were obtained for µ = 3,
a number of e-foldings between Hubble exit of the largest observable modes and the
end of inflation N? = 50, Υ ' 2.055 where Υ parameterizes the scale factor at the
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bounce, ab, in units of the Planck length. For this choice of parameters, ε1 = 0.0025,
ε2 = 0.045, Ninf = 65, and for a period of radiation and matter domination (neglecting
reheating) lasting 65 e-folds, such that ΩK = −0.002. The figure mainly illustrates
that at the frequency δη = 0.01, and for ς = 1.01, the oscillatory features in the pri-
mordial spectrum appear to improve the fit to the WMAP data in comparison with
what is obtained in the absence of oscillations in Pζ . For larger values of ς, such as
1.1 and 1.2, the effect of the oscillations worsens the fit near the first accoustic peak
at ` ' 200 over a widening range of ` values as ς is increased. At higher frequency, for
δη = 0.01, the resulting C`’s have large fluctuations that appear to be phase-shifted
with respect to the result obtained in the inflationary case. At low `, oscillations are
not visible but there remains a change in amplitude with respect to the ∆C`’s ob-
tained from inflation. This could be expected from Eq. (4) for the values of ς and δη
chosen. The matter power spectrum Pδ is related to the two–point correlation func-
tion of visible matter on the sky. Pδ can be related to the primordial power spectrum
Pζ(k) by a k-dependent transfer function T (k), i.e.one can write Pδ(k) = T (k)Pζ(k).
Roughly speaking, T (k) ' 1 for small k, and T (k) ∝ k−2 at large wavenumbers. The
oscillating behaviour observed in the primordial perturbation spectrum is therefore
expected to be transmitted to the matter power spectrum. Again, using the CAMB

code with standard cosmological parameter values, we have computed the theoretical
matter power spectra for the parameters specified above. The results are shown in
blue in Fig. 2. The theoretical spectra were then convolved with the observational
window functions of the Sloan Digital Sky Survey (SDSS) and are shown by the red
dots in Fig. 2. These theoretical results are compared with the SDSS data, shown
in black in the figure. The convolution evidently smoothes out the oscillations, and
it is clear from Fig. 2 that there exist values of ς and ∆η such that the resulting
matter spectra are fully degenerate with those obtained from a standard slow roll
power spectrum.

5 Conclusions

This paper refines and completes the analysis begun in Ref. [2] and continued in
Ref. [3]. In Ref. [2], the authors focused on the immediate vicinity of the bouncing
phase and conducted a detailed analysis of the bounce-inducing background cosmol-
ogy and on the transfer of fluctuations through the bounce by modifying the exact
solution obtained when considering a de Sitter universe with closed spatial sections.
In Ref. [3], the framework used in Ref. [2] was used to show that for symmetric or
quasi-symmetric general relativistic bouncing cosmologies with K = +1 the peak in
the potential for the variable u could never be large so that the metric perturbation is
always sub-Hubble in the vicinity of the bounce. A cosmology smoothly connecting a
contracting phase and a bouncing phase to an inflationary phase was then proposed
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Figure 1: ∆C` spectra for ς = 1.01, 1.1 and 1.2, from top to bottom respectively and
for increasing values of ∆η from left to right, generated using CAMB. The error bars
are the WMAP error bars on the measured values of the C`’s, the red dashed lines are
the ∆C`’s for an inflationary cosmology and the blue line in full represents the ∆C`’s
for the bouncing cosmology presented in this work.

and analyzed at both the background and linear perturbations level. In the present
work, we have provided a detailed summary of the background cosmology exploited
in Ref. [3] and have performed a much more detailed calculation of the transfer of
perturbations through the contracting, bouncing and inflationary phases of the cos-
mological background discussed in Ref. [3]. We have parameterized the initial state of
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Figure 2: Matter power spectrum for ς = 1.01, 1.1 and 1.2, from top to bottom
respectively and for increasing ∆η from left to right. The black dots with error bars
are the data points from the Sloan Digital Sky Survey (SDSS), the blue line is the
theoretical prediction of the bouncing cosmological model obtained using CAMB, and
the red dots are the simulated data points obtained by convolving the blue line with
the SDSS window functions.

perturbations prior to the bounce in terms of the vacuum state and used the solution
for the canonical variable v (far from the high spatial curvature region) in terms of
Hankel functions, to reduce the number of unknown parameters needed to define the
initial state of first order perturbations. We then computed the effects of the bounce
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and the choice of initial conditions on the scalar and tensor mode primordial spectra
Pζ and Ph. We discussed the modified low multipoles of the CMB angular power
spectrum, the modified COBE normalization and also provided numerical evidence,
using CAMB, that the C`’s and matter power spectrum Pδ are affected by the combined
effect of the choice of initial conditions and the bouncing cosmology.

The crucial point is the appearance of oscillations in the power spectra. These
oscillations mainly depend on the initial state of the perturbations through the free
parameter ς and on a new cosmological scale ∆η. The former sets the amplitude of the
oscillations while the latter sets the oscillatory frequency. As exhibited in the figures
of the C`’s and Pδ, there exists values of ς and ∆η for which the oscillations induced
by the bouncing phase and by the choice of initial conditions do not conflict with
the WMAP and SDSS data. In fact, there appears to be parameter ranges in which
the C`’s and the Pδ derived from Pζ are fully degenerate with those obtained from a
standard slow-roll primordial spectrum. The tensor-to-scalar ratio is also modified.
It departs from the standard result in two ways, first by a modification of the overall
amplitude and secondly by the existence of a scale-depedent oscillation.

We can also identify a new way of indirectly measuring the spatial curvature of
the universe, assuming the oscillations can be attributed to a bouncing cosmology of
the kind described in this paper and can indeed be measured. The scale factor at
the bounce as well as the model parameter µ determine both ΩK and ∆η, thereby
establishing a one-to-one relationship between the two. If the frequency of oscillations
could be measured together with the spectral index of Pζ , then ΩK is determined, as
well as ab.
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