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1 Introduction

The Maldacena conjecture (AdS/CFT correspondence) [1] states that N = 4 super
Yang-Mills (SYM) theory in four dimensions and IIB superstring theory on AdS5×S5

capture the same physics. The field theory description is mainly useful at weak
coupling; the string theory picture can be exploited to obtain strong coupling infor-
mation. Anomalous dimensions of composite operators in the field theory correspond
to the energy levels of the dual strings. The computation of the one-loop anomalous
dimension of the so-called BMN operators can be interpreted as the problem of find-
ing the energy eigenvalues of the Heisenberg XXX 1

2
chain [2]. In the planar limit,

higher loop effects define an integrable deformation of the spin chain Hamiltonian [3].
The corresponding all-loops Bethe equations have been generalised to other types of
composite operators, too. A high spin continuum limit of the Bethe equations in the
twist operator sector leads to an integral equation [4] from which the “cusp anoma-
lous dimension” can be derived analytically as a weak and strong coupling expansion,
or numerically for any value of the coupling. Since scattering amplitudes in strongly
coupled N = 4 SYM are also described by a type of integrable system [5] there is hope
that such deeply non-perturbative sectors will also become accessible for higher-point
objects in the model.

The strong coupling limit of these scattering amplitudes takes the form of poly-
gonal Wilson loops with light-like edges [6]. Between MHV amplitudes and Wilson
loops this relation continues to hold also at weak coupling [7, 8]. The present talk
summarises recent work in which we elaborated that both the MHV amplitudes and
the dual Wilson loops can be generated from correlation functions of gauge invariant
composite operators in a light-cone limit [9, 10]. What is more, the correlators of
stress-energy tensor multiplets can also produce NkMHV amplitudes [11]. The in-
tegrand that this construction yields for the amplitudes identically reproduces the
all-loops proposal of [12].
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2 Definitions

The N = 4 SYM theory is the maximally supersymmetric non-abelian gauge theory
in four dimensions. It has the elementary fields

{φ[AB], ψαA, ψ
α̇

A, Aµ} , A ∈ {1, 2, 3, 4} , φAB =
1

2
ǫABCD φCD , (1)

which are related by the on-shell supersymmetry transformations1

Qα
A φBC = i

√
2 (δB

AψCα − δC
AψBα) , Qα

A Aββ̇ = −2 i δα
β ψAβ̇ , (2)

Qα
A ψB

β = δB
AFα

β + i g[φBC , φCA] δα
β , Qα

A ψ
β̇

B =
√

2 Dβ̇αφAB

and the conjugate. The fields {φ, ψ, F} all transform in the adjoint representation

of the gauge group, say SU(Nc): Upon introducing Grassmann odd variables θαA, θ
α̇

A

we can build a field strength multiplet

W [AB] = φ[AB](x) + θα[Aψ(x)B]
α + θ

[A
(αθ

B]
β)F

αβ + O(θ) . (3)

There is no quantum formalism with manifest N = 4 supersymmetry. Instead, one
can use standard field theory methods and observe that results will be organised in
multiplets of on-shell N = 4 symmetry, or one can use quantum formalisms in which
one or two supersymmetries are made manifest by introducing superspace coordinates.
A simple reduction to N = 2 superfields is achieved by breaking the SU(4) internal
symmetry in the following way:

WN=2 = W 23
N=4|θ1=θ4=0 , q = {φ1i, ψ1, ψ4} . (4)

The single superfield incorporating the elementary fields of N = 4 SYM thus breaks
into N = 2 Yang-Mills and matter fields. In this reduction supersymmetry still only
closes on the fields of the matter multiplet q (the “hypermultiplet”) if the equations
of motion are satisfied. The introduction of an additional bosonic coordinate u solves
this problem [13]. We shall work with the resulting “harmonic superspace” formalism.
Hence there are two off-shell N = 2 supersymmetric quantum fields:

q+(xA, θ+, θ
+
, u) , θ+ = θi u+

i , θ
+

= θi u
+i , xA = x − 4 i θ(iθ

j)
u+

i u−
j ,

V ++(xA, θ+, θ
+
, u) , u = (u+, u−) ∈ SU(2)/U(1) (5)

The action of N = 4 SYM takes the form

SN=4 SYM = SHM/SYM + SN=2 SYM (6)

1The transformations only close on the fields when the equations of motion are satisfied.
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SHM/SYM = −2
∫

du d4xA d2θ+ d2θ
+

Tr(q̃+D++q+ + i
√

2 q̃+[V ++, q+]) , (7)

SN=2 SYM = − 1

4 g2

∫
d4xL d4θ Tr W 2 = − 1

4 g2

∫
d4xR d4θ Tr W

2
, (8)

W =
i

4
u+

i u+
j D

i

α̇D
jα̇

∞∑

r=1

∫
du1 . . . dur

(−i
√

2)r V ++(u1) . . . V ++(ur)

(u+u+
1 )(u+

1 u+
2 ) . . . (u+

r u+)
.

Here xαα̇
L = xαα̇ − 2iθiαθ

α̇

i and xA indicates a similar change of basis in case of the
hypermultiplet. Of the corresponding Feynman rules we will only need the q̃V q
vertex, the matter propagator (in the diagrams below depicted by a solid line) and
a mixed WV propagator (a curly line with a dot on the W end). The vertex does
not carry covariant derivatives; it is simply given by an integration over space-time,
the plus projected Grassmann coordinates and the u’s. The SU(2) integration can
always be accomplished by a set of algebraic rules.

In configuration space the conformal symmetry of the model is transparent. The
propagators take a simple form also in x space because the theory is massless:

〈q̃+
a (1)q+

b (2)〉 =
(12)

4π2 x̂2
12

δab , (12) = −(21) = u+i
1 ǫiju

+j
2 , (9)

〈Wa(1)V ++
b (2)〉 = − g2δab

4π2 x̃2
12

(θ12)
2

with the supersymmetric coordinate differences

x̂µ
12 = xµ

A1 − xµ
A2 +

2i

(12)
[(1−2)θ+

1 σµθ
+

1 + (2−1)θ+
2 σµθ

+

2 + θ+
1 σµθ

+

2 + θ+
2 σµθ

+

1 ] ,

x̃αα̇
12 = xαα̇

L1 − xαα̇
A2 − 4iu−

2iθ
iα
1 θ

+α̇

2 , θα
12 = u+

2iθ
iα
1 − θ+α

2 . (10)

We will study correlation functions of

O = Tr(q+q+) , Õ = Tr(q̃+q̃+) , Ô = 2 Tr(q̃+q+) , (11)

i.e.
Gn =

∫
DΦ eiSN=4 SYM Õ(x1) O(x2) Õ(x3) . . . O(xn) . (12)

Correlators of N = 4 stress-tensor multiplets can be reconstructed from several such
SU(2) projections.

3 Wilson loops from correlators

To begin with consider only scalar fields. The connected tree level graphs yield

G(0)
n = N2

c

∑

{i1,...,in}

S(0)(xi1,i2)S
(0)(xi2,i3) . . . S(0)(xin,i1) , S(0)(x) =

1

4π2 x2
. (13)
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The dominant power singularity in the limit x2
i,i+1 → 0 is:

G(0)
n

x2
i,i+1

→0
−→ N2

c S(0)(x12)S
(0)(x23) . . . S(0)(xn1) =

(2π)−2nN2
c

x2
12x

2
23 . . . x2

n1

(14)

which is depicted in diagram (a). Diagram (b) is suppressed by x2
34x

2
1n/(x2

3nx2
14). In

. . .

. . .

x1 x1

x2 x2

x3 x3x4 x4

xn−1 xn−1

xn xn

(a) (b)

Figure 1: Singularities of tree level diagrams.

[9] we present a detailed analysis of the interactions of a scalar propagating from one
cusp to another in the full N = 4 theory . The light-cone condition x2

i,i+1 = 0 is
Lorentz invariant. In a frame in which the scalar is boosted to a very high velocity
essentially all interactions are seen to be suppressed. The gauge field behaves as a
classical background, leading to a dressed scalar propagator:

lim
x2

i,i+1
→ 0

G(0)
n = 〈0|Tr[S(x1, x2; A)S(x2, x3; A) . . . S(xn, x1; A)]|0〉 (15)

with

S(xi, xi+1; A) = S(0)(xi,i+1)P exp
(
ig

∫ xi+1

xi

dz · Ã(z)
)

G(xi, xi+1; A) . (16)

The factor G should have an OPE expansion (∆ is the twist)

G(x, 0; A) =
∑

(x2)∆C∆,N(x2µ2) xµ1
. . . xµN

Oµ1...µN

∆ (0) (17)

implying limx2→ 0 G = 1. It follows

Gn

G
(0)
n

→ W adj[Cn] =
1

N2
c − 1

〈0| TrA

[
P exp

(
ig

∫

Cn

dz · Ã(z)
)]

|0〉 (18)

where

[Ãµ(z)]ab = −ifabcA
c
µ(z) , Cn = [x1, x2] ∪ [x2, x3] ∪ . . . ∪ [xn, x1]. (19)
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Last, the Wilson loop in the adjoint representation is actually equal to the square of
the same Wilson loop with the generators in the fundamental representation.

In the following we present explicit calculations at one- and two-loop level in the
quantum theory in order to illustrate that this simple argument correctly describes
the underlying physics. Let us first consider 〈Õ(1)O(2) Õ(3)O(4)〉 at tree-level and
one loop.

Figure 2: Tree level

Figure 3: One loop

After the superspace and SU(2) integrations the one-loop correction becomes [14]:

〈O(1) Õ(2) O(3) Õ(4)〉 g2Nc

4 π2

∝ (14)2(23)2A1+(12)2(34)2A2+(12)(23)(34)(41)A3 (20)

Here A1 and A2 are simple

A1 =
1

x2
14 x2

23

g(1, 2, 3, 4) , A2 =
1

x2
12 x2

34

g(1, 2, 3, 4) , (21)

but

A3 =
2 ∂2.∂4 f(1, 2, 1, 4)

x2
23 x2

34

+
2 ∂1.∂3 f(2, 1, 2, 3)

x2
14 x2

34

+
2 ∂2.∂4 f(3, 2, 3, 4)

x2
12 x2

14

(22)

+
2 ∂1.∂3 f(4, 1, 4, 3)

x2
12 x2

23

+
(∂2 + ∂3)

2f(1, 2, 3, 4)

x2
14x

2
23

+
(∂1 + ∂2)

2f(1, 4, 2, 3)

x2
12x

2
34

,
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where

g(1, 2, 3, 4) =
1

4π2

∫ d4x0

x2
10 x2

20 x2
30 x2

40

, f(1, 2; 3, 4) =
1

16π4

∫ d4x0 d4x0′

x2
10 x2

20 x2
00′ x

2
30′ x

2
40′

.

(23)
We are ultimately interested in the x2

12 = x2
23 = x2

34 = x2
41 → 0 limit of A3. Short of

differentiating the explicitly known but rather complicated integral f it is not obvious
how this limit could be taken. For simplicity, let us first study the light-cone limit of
g(1, 2, 3, 4) in dimensional regularisation (the mass-scale µ is suppressed):

gǫ =
∫ d4−2ǫx0

(x2
10 x2

20 x2
30 x2

40)
1−ǫ =

Γ(2 − 3ǫ)

(x2
24)

2−3ǫ

∫ 1

0

dz1 . . . dz4 δ(1 − ∑
i zi) (z1 . . . z4)

−ǫ

(z2z4 + z1z3 X)2−3ǫ

(24)
using the Feynman parameters z1, z2, z3, z4. Due to the on-shell conditions the de-
nominator contains a sum of only two terms; the shorthand denotes X = x2

13/x
2
24.

We can separate the denominator using a single Mellin-Barnes (MB) parameter

1

(A + B)ν
=

1

2πi Γ(ν) Bν

∫ i∞

−i∞
dz Az B−z Γ(−z) Γ(ν + z) (25)

and integrate out the zi employing

∫ 1

0

(
Πi dzi z

qi−1
i

)
δ(1 −

∑

i

zi) =
Πi Γ(qi)

Γ(
∑

i qi)
. (26)

It follows

gǫ =
∫ i∞

−i∞
dz

X−z Γ(−z) Γ(2 − 3ǫ + z)Γ(1 − ǫ + z)2 Γ(−1 + 2ǫ − z)2

πi (x2
24)

2−3ǫ
X2−3ǫ Γ(2ǫ)

(27)

and finally:

lim
x2

i,i+1
→ 0

(
x2

13 x2
24

)1−ǫ
gǫ(1, 2, 3, 4) = −2

[

−(x2
13)

ǫ

ǫ2
− (x2

24)
ǫ

ǫ2
+ log2(X) + O(ǫ)

]

(28)
This is exactly the functional form of the square light-like Wilson loop at one loop!

4 Amplitudes via Lagrangian insertions

The computation of loop corrections to the correlators by the method of Lagrangian
insertions [14] yields a simple way of taking the desired light-cone limit [9, 10]. It is a
so far unexplained observation that the use of N = 2 superfields in combination with
this technique exactly reproduces the all-loops integrand of [12].
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Differentiating a correlator w.r.t. the coupling constant brings down the Yang-
Mills action SN=2 SYM from the exponential weight factor in (12):

g2 ∂

∂g2
Gn = −

∫
dDx0 G

(0)
n+1;1(x0; x1, u1, . . . , xn, un) + O(g4) (29)

with the Born-level (n + 1)-point correlator

G
(0)
n+1;1(x0; x1, u1; . . . ; xn, un) =

∫
d4θ0 〈LN=2 SY M(x0, θ0) O(x1, u1) . . . O(xn, un)〉+ O(g4) .

(30)
The relevant one-loop Feynman diagrams are as before, but with the Yang-Mills
action “inserted” into the gluon lines: The integrals in the “building blocks” become

kk k + 1k + 1

l + 1 l + 1l l

0

(a) (b)

Figure 4: One-loop graphs with insertions

rational due to differentiation:

〈q̃+
a (1) Wb(0) q+

c (2)〉 = −2ig2fabc

(2π)4

(12)

x2
12

i12 (31)

〈q̃+
a (1) Tr(W 2)(0) q+

b (2)〉 =
g4Nc δab

(2π)6

(12)

x2
12

i212 (32)

with

i12 =
x2

12

(12)

θ+
0/1 · θ+

0/2

x2
10 x2

20

−
θ+
0/1 · θ−0/1

x2
10

+
θ+
0/2 · θ−0/2

x2
20

−
(θ+

0/1[x10, x20]θ
+
0/2)

(12) x2
10 x2

20

. (33)

Notice that i12 is rational and proportional to (12)/x2
12 so that it is elementary to

take the light-cone limit. Summing up all graphs:

G
(0)
n+1;1 =

a

4π2
G(0)

n

∫
d4θ0

( n∑

k=1

ik,k+1

)2
, a =

g2Nc

4 π2
(34)

→ a

8π2
G(0)

n

∑

k,l

x2
k,l+1x

2
k+1,l − x2

klx
2
k+1,l+1 + 4 i ǫµνλρ xµ

k,0x
ν
k+1,0x

λ
l,0x

ρ
l+1,0

x2
k,0x

2
k+1,0x

2
l,0x

2
l+1,0
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The last formula exactly reproduces the parity-even part of dimensionally regularised
n-point one-loop MHV amplitudes if the algebra is kept in four dimensions and only
the dimension of the measure at the insertion point is changed! Note that the parity-
odd sector in the last formula vanishes upon integration. Summarising:

• Amplitudes :

〈ϕ(xi) ϕ(xi+1)〉 =
1

4π2 p2
i

, pi = xi−xi+1 ,
∫

d4−2ǫl , l = x0k

(35)
The pi are dual momenta. In the light-like limit the g(k, k + 1, l, l + 1) become
two-mass easy box integrals and

lim
x2

i,i+1
→ 0

G(1)
n

G
(0)
n

= 2
A

(1)
MHVn

A
(0)
MHVn

. (36)

• By contrast, Wilson loops arise in standard dimensional regularisation

〈ϕ(xi) ϕ(xi+1)〉 =
1

4π2
(
x2

i,i+1

)1−ǫ ,
∫

d4−2ǫx0 . (37)

In [9] the argument yielding (34) is repeated in standard dimensional regularisation.
It is shown that the light-cone limit yields an n-gon one-loop Wilson loop in the
adjoint representation; the integration over the insertion point puts the Yang-Mills
line from any gauge into (supersymmetric) Landau gauge. This constitutes a proof
of the conjecture of the preceding section at one-loop level, because the vacuum
expectation value of any closed Wilson loop is gauge invariant.

5 Two loops

The four-point two-loop correlation functions of hypermultiplet bilinears were studied
in [14].

lim
x2

i,i+1
→0

G4/G
(0)
4 = 1 + 2 a x2

13x
2
24 g(1, 2, 3, 4) + a2

[
(x2

13x
2
24 g(1, 2, 3, 4))2 (38)

+ 2 x2
13x

2
24

(
x2

13 h(1, 2, 3; 1, 3, 4) + x2
24 h(1, 2, 4; 2, 3, 4)

)]
+ O(a3)

The four-point two-loop MHV amplitude was published in [15]:

A4/A
(0)
4 = 1+a x2

13x
2
24 g(1, 2, 3, 4)+a2 x2

13x
2
24

[
x2

13 h(1, 2, 3; 1, 3, 4)+x2
24 h(1, 2, 4; 2, 3, 4)

]

(39)
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The new integral in these formulae is the “double-box”

h(1, 2, 3; 1, 2, 4) =
1

16π4

∫ dDx0d
Dx0′

(x2
10x

2
20x

2
30)x

2
00′(x

2
10′x

2
20′x

2
40′)

. (40)

g(1, 2, 3, 4) h(1, 2, 3; 1, 3, 4)

00 0′

11

22

33

4 4

11

22 33

44

Figure 5: One- and two-loop boxes, momentum representation and dual graphs

Comparing (38) with (39) we see

lim
x2

i,i+1
→ 0

G4/G
(0)
4 =

(
A4/A

(0)
4

)2
+ O(a3) (41)

not only w.r.t. the overall coefficient but also the functional form. The same holds
at five points, although this involves an identity between integrals.

What is more, the equivalence between the light-like limit of the correlators and
MHV amplitudes holds on the level of the integrand, for both the parity-even and the
parity odd-parts [10]. Suppose that we derive an l-loop correlator Gn by l Lagrangian
insertions:

G(l)
n (x1, . . . , xn) ∝

∫ l∏

i=1

d4zi d
4ρi G

(0)
n+l;l(z1, . . . , zl; x1, . . . , xn) (42)

The integrand of the off-shell correlator is

G
(0)
n+l;l = 〈L(z1) . . . L(zl) O(x1) O(x2) . . . O(xn)〉tree . (43)

Let us denote its light-cone limit as In+l = limx2
i,i+1

→ 0 (G
(0)
n+l;l/G

(0)
n ) and the integrand

of the l-loops n-point MHV amplitude as Ân+l. We conjecture:

1 +
∑

l≥1

al In+l = (1 +
∑

l≥1

al Ân+l)
2 (44)
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Integrands are not uniquely defined. By way of example the parity-odd part in (34) is
non-vanishing as a rational function but it integrates to zero due to its antisymmetry.
Remarkably, our procedure leads to exactly the same integrand as postulated in the
all-loops proposal of [12].

In order to state an example we need to introduce some details of the momentum
super-twistor formalism in terms of which the conjecture of [12] is formulated. The
outer points (so the vertices of the n-gon) are defined by n momentum twistors
Za, a ∈ {1, 2, 3, 4}, a pair {A,B}, {C,D}, . . . is needed for each integration point.

Za = (λα, µα̇) , xαα̇
i =

λα
i µα̇

i+1 − λα
i+1µ

α̇
i

λβ
i λi+1 β

(45)

and the two integration variables x0, x0′ depend on {A,B}, {C,D}. We further need

〈AB〉 = λβ
AλB β ,

〈ijkl〉 = det(Zi, Zj, Zk, Zl) , (46)

〈ABij〉 = 〈A, i, i − 1, i, i + 1〉〈B, j, j − 1, j, j + 1〉 − (A ↔ B) .

Note that
〈i, i + 1, j, j + 1〉 = 〈i, i + 1〉 〈j, j + 1〉x2

ij (47)

while the determinant is more complicated if the twistors belong to more than two
points. The last formula shows clearly that adjacent xi are in fact light-like separated
for any choice of Z’s because x2

i,i+1 ∝ 〈i, i + 1, i + 1, i + 2〉 which trivially vanishes
because of the repeated argument of the determinant. Hence we can use random
complex integers for the Zi = (λi, µi) for numerical tests of the conjectured integrand
identity between correlators and amplitudes. All expressions remain rational so that
Mathematica can calculate exactly. Any disagreement would immediately show.

Â5+1 =
2

5

〈1234〉〈2345〉〈AB〉4
〈AB12〉〈AB23〉〈AB34〉〈AB45〉 (48)

+
〈AB25〉〈2534〉〈AB〉4

〈AB12〉〈AB23〉〈AB34〉〈AB45〉〈AB51〉 + (cyclic)

Â5+2 =
1

2

〈1234〉〈2345〉〈5123〉〈AB〉4〈CD〉4
〈AB12〉〈AB23〉〈AB51〉〈ABCD〉〈CD23〉〈CD34〉〈CD45〉 (49)

+
1

2

〈1345〉〈3451〉〈AB13〉〈AB〉4〈CD〉4
〈AB12〉〈AB23〉〈AB34〉〈AB51〉〈ABCD〉〈CD34〉〈CD45〉〈CD51〉

+ (AB ↔ CD) + (cyclic)

according to [12]. We confirm

I5+1 = 2 Â5+1 , I5+2 = 2 Â5+2 + (Â5+1)
2 . (50)

The same holds at six points. For these tests, the correlators have been derived using
N = 2 superfields and two insertions as in [14].
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6 Conclusions and Outlook

In N = 4 SYM, a light-like limit sends n-point functions of gauge invariant composite
operators to Wilson loops or scattering amplitudes. Which object is obtained depends
on the regularisation prescription. The connection to Wilson loops is “manifest” while
that to amplitudes needs to be understood. The correlator/amplitude duality works
for non-MHV amplitudes, too [11]. In all cases that we studied the higher-loop
amplitude integrands of Arkani-Hamed et al. were exactly matched. Last, we remark
that the usual x variables were not worse than the momentum twistors when deriving
the six-point one-loop NMHV amplitude from a correlator.

In future work we would like to find a field theory based proof for the triangle
relation between correlators, Wilson loops and amplitudes. In order to sidestep the
difficulties in handling the complicated rational functions we have performed numeri-
cal (though exact) tests of the integrand relation between amplitudes and correlators.
It would be good to show the exact equality of the integrands by analytic means. It
is certainly also worthwhile to analyse the factorisation properties of the residues of
the higher-loop correlation functions in some additional limits; such techniques have
yielded the recursion relations for amplitude integrands that form the basis of the
all-loops conjecture [12].

Our work concerns correlators related to the stress-tensor multiplet of N = 4
SYM. A proof of the correlator/Wilson loop duality was suggested for n-point func-
tions of the Konishi operator in [16]. The duality is in fact quite universal; we may
wonder for what other correlators it will work. Further, it remains to explore the
strong-coupling regime of the construction.

Last, it would be fascinating to study to what extent off-shell correlators can be
determined from amplitudes.

We have reported on the results of conjoint work with L. Alday, P. Heslop, G. Ko-
rchemsky, J. Maldacena and E. Sokatchev. B. Eden acknowledges support by STFC
under the rolling grant ST/G000433/1.
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