
Pions and Strange Mesons in a Modified Soft-Wall
Model of AdS/QCD

September 14, 2011

Sean P. Bartz
School of Physics and Astronomy
University of Minnesota
116 Church St. SE, Minneapolis, MN 55455, USA

1 Introduction
Quantum chromodynamics (QCD), the theory describing the strong nuclear force,
has yet to be solved analytically, despite the extensive research of the past thirty-
five years. Recently, the Anti-de Sitter space/conformal field theory correspondence
(AdS/CFT) has brought hope of reformulating QCD into an analytically solvable
theory. This gauge/gravity duality is a result from string theory that relates strongly-
coupled gauge theories in D dimensions to weakly-coupled gravity in D + 1 curved
spacetime dimensions [1]. Calculations that are impossible in the non-perturbative
gauge theory can be related to perturbative results from the gravity theory using
the AdS/CFT dictionary [2, 3]. Although QCD has only approximate conformal
symmetry in its high-energy limit, it has been conjectured that QCD may possess a
suitable 5D gravity dual for such analysis [4, 5]. Such studies are known as AdS/QCD
or holographic QCD. “Top-down” models start with a string theory and attempt to
find a gravitational background that will reproduce basic QCD features. A more
phenomenological approach is the “bottom-up” model, which begins with QCD ob-
servables and builds a 5D gravity model that reproduces these features [5].

Confinement breaks the conformal symmetry of QCD. This is incorporated in
AdS/QCD by a mechanism that prevents the fields from penetrating deeply into the
bulk. The simplest way to achieve this is through a hard cutoff related to the QCD
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mass scale, as seen in the “hard-wall” model [5, 6]. This model fails to accurately model
the spectrum of the radially excited meson states, predicting a quadratic trajectory
m2

n ∼ n2, as opposed to the linear trajectory m2
n ∼ n expected [7]. A linear trajectory

can be found by implementing a “soft-wall” model, where the 5D action is multiplied
by a dilaton field φ, which decreases the action at large z [8]. The linear mass
trajectory for the mesons is recovered when φ(z) ∼ z2 at large z.

Chiral symmetry is broken explicitly by the quark mass and spontaneously by the
presence of a quark condensate. The breaking of this symmetry is responsible for the
non-zero mass of the pion and the mass splitting between the vector and axial-vector
mesons. These types of chiral symmetry breaking occur independently in QCD, which
must be reflected in an AdS/QCD model. In addition, the model must ensure that
chiral symmetry is not restored for the highly excited states of the vector and axial
mesons [9].

This paper uses a bottom-up soft-wall AdS/QCD model based upon [8] to model
the mass spectra of the radial excitations of the mesons. Section 2 presents a modified
simple soft-wall model from the work in [10], which obtains the correct form of chiral
symmetry breaking while also improving the predicted mass spectra for the scalar,
vector, and axial sectors. Section 3 describes the continuation of this model to ac-
curately model the pseudoscalar sector [11]. Finally, Section 4 describes the ongoing
work to expand this soft-wall model by including the strange quark.

2 Modified Soft-Wall Model
The four-dimensional fields of QCD live on a surface in the five-dimensional anti-de
Sitter space, with a metric given by

ds2 = a2(z)(ηµνdxµdxν + dz2), z ≥ 0, (1)

where a(z) = L/z is the warp factor and L is the AdS curvature radius. The bulk
coordinate z is associated with inverse energy scales, with the ultraviolet limit of QCD
represented by fields at z → 0 [4]. The AdS/CFT dictionary [1, 2] states that each
operator O(x) in the 4D conformal field theory is associated with a bulk field ψ(x, z).
The values of the bulk fields at the UV boundary act as sources for the corresponding
4D currents. Global symmetries of the 4D field theory become gauged symmetries
for the bulk fields.

The field content of the 5D theory is dictated by the operators relevant to the
chiral dynamics of QCD. The gauge fields AL µ, AR µ correspond to the left- and
right-handed currents of the SU(Nf )L × SU(Nf )R chiral symmetry, where Nf is the
number of quark flavors in the model. The scalar field X is associated with the chiral
operator qq [5]. The masses of the bulk fields are set by the AdS/CFT relation [12]
m2

5L
2 = (∆− p)(∆ + p− 4), where ∆ is the dimension of the p-form QCD operator.
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4D Operator 5D Field p ∆ m2
5L

2

qLγµtaqL Aa
L µ 1 3 0

qRγµtaqR Aa
R µ 1 3 0

qα
Rqβ

L
2
zX

αβ 0 3 -3

Table 1: Operators and fields of the model. The matrices ta are the generators of the
SU(Nf ) symmetry.

Table 1 illustrates the fields and operators of our model, showing that the scalar field
is the only massive field in this model.

The simplest soft-wall action involving the fields from Table 1 is given in [8]. This
action was modified in [10] with the addition of a quartic term in the scalar potential,
yielding

S5 =

ˆ

d5x
√
−ge−φ(z)Tr

[
|DX|2 + m2

X |X|2 − κ|X|4 +
1

2g2
5

(F 2
A + F 2

V )

]
, (2)

The 5D gauge coupling constant g5 is fixed by calculating the vector current two-point
function using this model and then comparing this to the leading order result from
QCD, leading to the identification g2

5 = 12π2/Nc [5]. The parameter κ is fit using the
meson mass spectra. The field X includes both the scalar and pseudoscalar fields in
a representation that will be discussed in Section 3.1. The field strength tensors and
covariant derivative are defined as

FMN
L,R = ∂MAN

L,R − ∂NAM
L,R − i[AM

L,R, AN
L,R]

DMX = ∂MX − iAM
L X + iXAM

R .

To describe the vector and axial-vector mesons, we define the fields V M = 1
2(A

M
L +AM

R )
and AM = 1

2(A
M
L − AM

R ). It is convenient to write the action in terms of the fields
that describe physical particles with the following re-definitions

(F 2
A + F 2

V ) = 2(F 2
L + F 2

R) (3)

DMX = ∂MX − i{Aa
M , X}+ i[V a

M , X] (4)

The scalar field X takes on a z-dependent vacuum expectation value (VEV),
breaking the chiral symmetry. In a flavor-symmetric model, the VEV has the form
X0 = 〈X〉 = v(z)

2 I, where I is the Nf × Nf identity matrix. From the AdS/CFT
dictionary established in [1, 2], v(z) has the ultraviolet asymptotic form
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lim
z→0

v(z) = mqz + σz3, (5)

where mq is the quark mass and σ = 〈qq〉 is the chiral condensate, the variation of
the vacuum energy with respect to mq.

Taking X = X0 and varying (2), we find that v(z) has the following nonlinear
equation of motion:

∂z(a
3e−φ∂zv(z))− a5e−φ

(
m2

Xv(z)− κ

2
v3(z)

)
= 0. (6)

The UV asymptotic form is given by (5), while the non-restoration of chiral symmetry
dictates that v(z) ∼ z in the infrared region. The VEV is parameterized so that it
matches the expected asymptotic behavior. A suitable form was found and justified
in [10]

v(z) = αz + βtanh(γz2) (7)

with the parameters defined as follows

α =

√
3mq

g5L
, β =

√
4λ

κL2
− α, γ =

g5σ√
3β

.

The quark mass and chiral condensate can each be taken to zero independently, and
the non-restoration of chiral symmetry does not depend on either of these parameters.
Thus, the spontaneous and chiral symmetry breaking occur separately, as desired [10].
Using (7) in (6) we can solve for the dilaton field.

Equations of motion are then derived using a variational principle. The eigenvalues
cannot be found analytically, so a numerical shooting method is used to calculate the
mass spectra for the scalar, vector, and axial sectors. The results for the vector
mesons are shown in Figure 1, and the scalar and axial sectors show similarly good
results [10]. These results reproduce the linear trajectories found in the simple soft-
wall model [8] for large n, while improving the agreement of the lower excitations
with data.

3 Pions in Soft-Wall AdS/QCD
This modified soft-wall model was later completed in the paper [11], which clari-
fied the discrepancies between two common representations of the pseudoscalar field,
calculated the pion mass spectrum to good accuracy, and derived the Gell-Mann–
Oakes–Renner relation from the model.

4



Figure 1: Radial excitations of the ρ meson [13] compared to numerical solution.

3.1 Pseudoscalar Representation
As mentioned above, the field X contains both the field representing the scalar
mesons, S, and the field representing the pseudoscalars, π, as well as the VEV. There
are two common ways to represent this field:

Xe =

(
v(z)

2
+ S(x, z)

)
Ie2iπe(x,z)ata (8)

Xl =

(
v(z)

2
+ S(x, z)

)
I + iπl(x, z)ata (9)

with I the Nf ×Nf identity matrix and ta the SU(Nf ) generators. We will refer to
Xe as the exponential representation and Xl as the linear representation.

Let us take (8) and substitute it into (2), keeping terms that include the field
π(x, z), as well as terms that will mix with π. We work in the axial gauge, Az = 0, and
separate Aµ into its transverse and longitudinal components: Aµ = Aµ⊥ + ∂µϕ where
∂µA

µ
⊥ = 0. Separating explicitly into regular 4D components and extra-dimensional

terms, and expressing it in terms of the longitudinal part of Aµ gives

Le = −1

2
e−φ(z)

[√
−ggµν(v2∂µπ∂νπ + v2∂µϕ∂νϕ− 2v2∂µπ∂νϕ)

+
√
−ggzzv2∂zπ∂zπ +

√
−ggzzgµν

g2
5

(∂z∂µϕ∂z∂νϕ)
]
. (10)

Varying (10) with respect to π and performing a Kaluza-Klein decomposition,expressing
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the system of equations in terms of its z-dependent parts.

eφ∂z

(
e−φv2

z3
∂zπn

)
+

v2m2
n

z3
(πn − ϕn) = 0. (11)

Varying (10) with respect to ϕ and breaking it down into KK modes gives the second
equation of motion

eφ∂z

(
e−φ

z
∂zϕn

)
+

g2
5L

2v2

z3
(πn − ϕn) = 0. (12)

We then substitute the linear representation of the scalar field into the original
Lagrangian. Following the same procedure as above, we derive two coupled equations.
Varying with respect to ϕ produces

eφ∂z

(
e−φ

z
∂zϕn

)
+

g2
5L

2v

z3
(πn − vϕn) = 0. (13)

Varying with respect to π gives the second equation of the linear representation

z3eφ∂z

(
e−φ

z3
∂zπn

)
−

(
m2

X

z2
− κL2v2

2z2

)
πn + m2

nπn = m2
nvϕn. (14)

3.2 Representation Equivalence
The pseudoscalar field representation should not affect the physical results obtained
from the model. It is therefore desirable to show that the equations of motion derived
from the two representations are equivalent.

We begin by expanding Xe to first order in the fields

Xe =
(v

2
+ S

)
(1 + 2iπe + . . .)

=
v

2
+ S + iπev. (15)

Comparing (15) to (9), we surmise that πev(z) → πl is the relationship between the
two representations. Let us substitute πe → πl/v(z) into the equations of motion of
the exponential representation and attempt to obtain the equations of motion of the
linear representation. The substitution into (12) immediately yields

eφ∂z

(
e−χ

z
∂zϕ

)
+

g2
5v

z3
(πl − vϕ) = 0, (16)
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which is equivalent to (13) as expected. Showing the equivalence of the other two
equations requires a bit more work. First we substitute for πe in (11) and then simplify
the expression,

π′′l −
(

φ′ +
3

z

)
π′l −

πl

v

(
v′′ − φ′v′ − 3

z
v′

)
+ m2

n(πl − vϕ) = 0. (17)

Recalling the equation of motion for v(z) (6), which does not depend on the pseuod-
scalar representation:

v′′ −
(

φ′ +
3

z

)
v′ +

(
3

z2
+

κL2v2

2z2

)
v = 0. (18)

Using (18) in (17), we find

π′′l −
(

3

z
+ φ′

)
π′l +

(
3

z2
+

κL2v2

2z2

)
πl + m2

n (πl − vϕ) = 0, (19)

which is equivalent to the other equation of motion of the linear representation (14).
The equations of motion are equivalent, confirming that physical results do not depend
on the representation.

3.3 Pion Mass Spectrum
We use a modified shooting method to solve the full set of equations of motion in
the linear representation. For large-n excitations the numerical technique develops
problems with the boundary conditions. As the number of oscillations in the eigen-
functions increase for higher n modes, the routine finds eigenvalues that are skewed
to larger values. To uncover the correct asymptotic behavior for large n, we take the
large-z limit of (13) and (14). As n increases, the eigenfunction is largely determined
by the behavior of the effective potential at large z. At large z, the VEV and dilaton
behave as

v(z) = (α + β)z ≡ Γ
z

L
(20)

φ(z) = λz2. (21)

To take the large-z limit of the linear representation, we introduce a new dimen-
sionless parameter, ξ =

√
λz, and expand in ξ. In the linear representation, we find

that (??) and (??) at large ξ become

−π′′k + ξ2πk =

(
κΓ2

2λ
− 2 +

m2
k

λ

)
πk −

m2
kΓ

λ
ϕk (22)

−ϕ′′k + ξ2ϕk =
g2
5Γ

λ
(πk − Γϕk) (23)
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Figure 2: The mass spectrum calculated in the AdS/QCD model is plotted along with
the experimental data [13]. The eigenvalues display two characteristics matching the
QCD pion spectrum: (1) low-mass ground state and (2) a large gap between the
ground state and the first excited state. The large-n approximation clearly follows
our calculated eigenvalues for n ≈ 4.

n π Data (MeV) πl (MeV) Large-n πl (MeV) ∂zπe (MeV)
1 140 143 - 1440
2 1300 ± 100 1557 - 1706
3 1816 ± 14 1887 - 1925
4 2070* 2095 - 2117
5 2360* 2298 2245 2290
6 - - 2403 2451
7 - - 2551 2601

Table 2: The observed masses [13] and calculated masses using the linear representa-
tions. The large-n limit solutions are valid from n ≈ 4. The eigenvalues found using
the method of [14] are also shown. *Appears only in the further states of [13]
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where (′) here indicates differentiation with respect to ξ. This set of equations has
the form of coupled harmonic oscillators, the equations of motion of which are

−ϕ′′k + ξ2ϕk = (2k + 1)ϕk (24)
−π′′k + ξ2πk = (2k + 1)πk k = 0, 1, . . . . (25)

We make the reasonable assumption that ϕk = ckπk, which ensures that (22), and
(23) have solutions. Using the form of (24) and (25) to solve for m2

k, and making use
of the fact that Γ2 = 4λ

κ ([10]), we find

m2
k = g2

5Γ
2 + (2k + 1)λ. (26)

Until now we have not made use of the fact that z ≥ 0. Because of this, the eigen-
functions ϕn and πn describe half harmonic oscillators with half as many modes;
therefore, we must take k → 2k. The mass eigenvalues for large n, where n = k + 1,
in both representations then become

m2
n = (4n− 3)λ + g2

5Γ
2 n = 4, 5, . . . (27)

which are also listed in Table 2 and plotted in Figure 2. Combining (27) and the
numerical technique, we obtain all the pseudoscalar eigenvalues. On inspection, we
find that this method should be trusted over the numerical routine for n ≥ 4.

3.4 Gell-Mann–Oakes–Renner Relation
In this section we explore the Gell-Mann–Oakes–Renner relation numerically and
analytically. Inserting the established equivalence between the exponential and linear
representations, πe = πl/v(z), into (17), we obtain

g2
5L

2v2

z2
∂z

(πl

v

)
= m2

π∂zϕ . (28)

Following the method of [5], we construct a perturbative solution in mπ where ϕ(z) =
A(0, z)− 1 and use the established relation

f 2
π = − L

∂zA(0, z)

g2
5z

∣∣∣∣
z→0.

(29)

Integrating (28) yields

π(z)

v(z)
= m2

π

ˆ z

0

du
u3

v2(u)

∂zA(0, u)

g2
5u

. (30)
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Figure 3: Plot of m2
π vs mq yields a straight line from which the pion decay constant

fπ is calculated using (33).

The function u3/v2(u) is significant only at small values of u ∼
√

mq/σ, where we
may use (29) to relate the derivative on A(0, u) to the pion decay constant, so that

πl

v
= −m2

πf 2
π

2mqσ
. (31)

We find that letting πl = −v(z) solves the axial-vector field’s equation of motion [10]

eφ∂z

(
e−φ

z
∂zAµ(q, z)

)
− q2

z
Aµ(q, z)− g2

5L
2v2

z3
Aµ(q, z) = 0 (32)

in the region of small z and as q → 0. As a result, (31) becomes the expected
Gell-Mann–Oakes–Renner (GOR) relation,

2mqσ = m2
πf 2

π . (33)

We solve for the ground-state pseudoscalar mass, mπ, for differing values of mq to
ensure that the numerical routine respects the GOR relation and gives a reasonable
value for fπ. The results are plotted in Figure 3. The slope of the line in Figure 3
suggests fπ = 90 MeV, a result consistent with the input parameters as described in
[10].

4 The Strange Quark in AdS/QCD
The models in Sections 2 and 3 involve only two quark flavors, describing only the
members of the meson octet with no strange quarks. This section adds a third flavor
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to the model, allowing for a description of the full meson octet. When the model is
expanded to Nf = 3, the flavor symmetry must be broken, due to the large value of
the strange quark mass. This is accomplished by giving the VEV the following form:

X0 =
1

2




v(z) 0 0
0 v(z) 0
0 0 vs(z)



 (34)

where vs(z) is also a solution to (6). This function should also be linear in the IR
region, but has different UV boundary conditions corresponding to the strange quark
mass and condensate.

The values for these additional parameters can be fixed in one of three ways. Al-
though the Gell-Mann–Oakes–Renner relation is broken for strange quarks, [15] uses
this relationship and the mass of the ground state K meson to set these parameters.
In [16], there are two methods used to set these constants. The first assumes that
the strange quark condensate does not differ from the quark condensate used for the
flavor-symmetric theory. The strange quark mass is then set by matching the kaon’s
ground-state mass in the model to its experimental value. The other method uses a
global fit of all the input parameters to a set of fifteen physical observables.

The flavor symmetry breaking comes entirely from the covariant derivative (4). In
a flavor-symmetric model, the commutation relations for (4) are trivial: {ta, X0} =
2taX0 and [ta, X0] = 0. Taking into account the breaking of flavor symmetry yields
more involved relations that depend on flavor index. Following [17, 15, 16] , we define
z-dependent mass matrices for the vector and axial sectors:

1

2
Ma 2

V δab = −Tr[ta, X0][t
b, X0] (35)

1

2
Ma 2

A δab = Tr{ta, X0}{tb, X0} (36)

The SU(3) generators are ta = λa/2, where λa are the Gell-Mann matrices. Working
out the commutators yields the following mass matrices

Ma 2
V =






0; a = 1, 2, 3
1
4(vs − v)2; a = 4, 5, 6, 7

0; a = 8
(37)

Ma 2
A =






v2; a = 1, 2, 3
1
4(v + vs)2; a = 4, 5, 6, 7

1
3(v

2 + 2v2
s); a = 8.

(38)

The SU(3) index a indicates which members of the meson octet are under consider-
ation: isovectors (a = 1, 2, 3), isodoublets (a = 4, 5, 6, 7), and isosinglet a = 8.
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Expanding the relevant terms and working out the commutation relations, we get
the equations of motion in Schrodinger form for the various sectors by following the
methods outlined above. The equations of motion for the vector and axial sectors
now have the same form, using the appropriate mass matrices:

−Ψa′′

n +

(
1

4
ω

′2 − 1

2
ω

′′
+

g2
5L

2

z2
Ma 2

Ψ

)
Ψa

n = m2
nΨa

n, (39)

where ω = φ(z) + log z and Ψ = V, A for the appropriate sector. For the isovector
particles (a = 1, 2, 3), the equations of motion reduce to the forms from [10], as
expected. Also, because the vector mass matrix Ma2

V is the same for the isovector
and isosinglet, their masses will be degenerate in this model. This suggests that the
vector isosinglet is the ω meson in the ideal mixing limit [17].

Using the linear representation (9), the equations of motion for the pseudoscalar
sector are

eφ∂z

(
e−φ

z
∂zϕn

)
+

g2
5L

2

z3
(ξa(z)πn −Ma 2

A ϕn) = 0 (40)

z3eφ∂z

(
e−φ

z3
∂zπn

)
−

(
m2

X

z2
− κL2(Ma 2

A −Ma 2
V )

2z2

)
πn + m2

nπn = m2
nξ

a(z)ϕn, (41)

where the matrix ξa is defined by the relation 2ξa(z)δab = Tr{ta, {tb, X0}}. This
evaluates to

ξa(z) =






v; a = 1, 2, 3
v + vs; a = 4, 5, 6, 7

1
3(v + 2vs); a = 8.

(42)

The pseudoscalar equations also reduce to their previous form (13) and (14) when
a = 1, 2, 3.

5 Conclusion
While AdS/QCD models have enjoyed some phenominological success, a model that
fully captures the richness of QCD remains a lofty goal. The work presented above
shows the progress that has been made with such models in describing meson phe-
nomenology. The modified soft-wall model has shown good results for the pion sector,
and work to include the strange quark is promising. There are several other exten-
sions that can be made to this modified soft-wall model. Baryons, tensor mesons,
and glueballs all have yet to be investigated in soft-wall AdS/QCD, leaving much to
be uncovered by future research.
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