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1 Introduction

At finite temperature and density anomalies give rise to new non-dissipative trans-
port phenomena in the hydrodynamics of charged relativistic fluids [1, 2, 3, 4]. As is
beautifully explained in the RHIC-made video [5] magnetic fields and vortices in the
fluid induce currents via the so-called chiral magnetic and chiral vortical conductiv-
ities. Although there have been many early precursors that found manifestations of
this phenomena in the physics of neutrinos [6, 7, 8, 9], the early universe [10] and con-
densed matter systems [11], the recent surge of interest is clearly related to the physics
of the quark gluon plasma. It has been suggested that the observed charge separation
in heavy ion collisions is related to a particular manifestation of these anomalous
transport phenomena: the chiral magnetic effect [1, 12]. The latter describes how a
(electro-magnetic) B-field induces via the axial anomaly an electric current parallel
to the magnetic field. The first application of holography to the anomalous hydrody-
namics is [13] where the anomalous transport effects due to R-charge magnetic fields
have been examined. Later studies showed that there is also a related vortical effect
[2, 3], i.e. a vortex in the fluid induces a current parallel to the axial vorticity vector
Ωµ = ϵµνρλuν∂ρuλ, and related effects of the presence of angular momentum had been
discussed before in a purely field theoretical setup in [8] and [14]. Studies of the chiral
magnetic effect using holography have appeared in [15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
and using lattice field theory in [25, 26, 27]. The experimental status of the observed
charge separation in heavy ion collision is discussed in [28, 29]. A related effect is the
so called chiral separation effect that induces an axial current in a magnetic field [30].
It has been argued to lead to enhanced production of high spin hadrons in [31]. In
[4] the authors showed that purely hydrodynamic considerations based on demand-
ing a positive definite divergence of the entropy current fix the chiral magnetic and
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chiral vortical conductivities almost uniquely. In [32] it was however pointed out
that there are ambiguities stemming from integration constants that allow additional
temperature dependence. It is precisely this temperature dependence that we can
fix by calculating the transport coefficients via Green-Kubo formulas and discover a
somewhat surprising relation to the gravitational anomaly.

Anomalies belong to the most interesting and most subtle properties of relativis-
tic quantum field theories. They are responsible for the breakdown of a classical
symmetry due to quantum effects. The Adler-Bardeen non-renormalization theorem
guarantees that this breakdown is saturated at the one-loop level. Therefore the
presence of anomalies can be determined through simple algebraic criteria on the
representations under which the chiral fermions of a particular theory transform. In
vacuum the anomaly appears as the non-conservation of a classically conserved cur-
rent in a triangle diagram with two additional currents. In four dimension two types
of anomalies can be distinguished according to whether only spin one currents appear
in the triangle [33, 34] or if also the energy-momentum tensor participates [35, 36]. We
will call the first type of anomalies simply chiral anomalies and the second type gravi-
tational anomalies. To be precise, in four dimension we should actually talk of mixed
gauge-gravitational anomalies since triangle diagrams with only energy-momentum
insertions are perfectly conserved (see e.g. [37]). In four dimensional Minkowski space
massless fermions can always be written in a basis of only left-handed fermions. If
they transform in a representation TA of a symmetry the presence of chiral anomalies
is detected by the non-vanishing of dABC = 1

2
Tr(TA{TB, TC}) whereas the presence of

a gravitational anomaly is detected by the non-vanishing of bA = Tr(TA).

2 Kubo Formulas

Transport coefficients can be computed in linear response theory via so-called Green-
Kubo formulas. The response of a system in equilibrium to an external perturbation
is encoded in the retarded Green’s functions. If we apply an electric field to our
system we will generate an electric current. If the electric field is (sufficiently) weak
the magnitude of the current will be proportional to the applied electric field and the
constant of proportionality is simply the electric conductivity σE .

J⃗ = σE E⃗ . (1)

We can derive a Green-Kubo formula by noting that the electric field is E⃗ = −iωA⃗ in
terms of a vector potential A⃗. We now interpret above equation as an expression for
the vacuum expectation value of the current in the background of an external gauge
field A⃗. Since the vector potential acts as a source for the current we can functionally
differentiate with respect to it and get an expression for the (retarded) two-point
function of currents. In particular we can obtain in this way the Green-Kubo formula
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for the DC-conductivity

σE = lim
ω→0

i

ω
⟨JiJi⟩|k⃗=0 , (2)

(no summation over the spatial index i here).
Let us now jump to the chiral magnetic effect. It describes the generation of a

current due to a magnetic field, so

J⃗ = σBB⃗ . (3)

Proceeding as before it is straightforward to see that the Green-Kubo formula for the
chiral magnetic conductivity σB is

σB = lim
kn→0

∑
i,j

ϵijn
i

2kn
⟨JiJj⟩|ω=0 . (4)

So far we have only discussed the response to electro-magnetic E- and B-fields. From
now on we want to be a bit more general and imagine to have an arbitrary symmetry
group with generators TA and couple them to non-dynamical, i.e. external gauge
fields AA such that their variation inserts the currents JA into correlation functions.
The obvious generalization of the chiral magnetic conductivity is then

σB
AB = lim

kn→0

∑
i,j

ϵijn
i

2kn
⟨J i

AJ
j
B⟩|ω=0 . (5)

That is σB
AB describes the generation of the current J⃗A if an external field B⃗B = ∇⃗×A⃗B

is switched on1.
If the fluid under consideration is charged with respect to some of the (classically)

conserved charges there will necessarily be an energy transport related to the charge
transport induced by the current J⃗A. We know that a variation in the charge distri-
bution will cost us an energy of the form δϵ = µAδQA. If we imagine a test charge
δQA moving through the charged plasma it will therefore generate a current δJ⃗A and
induce also an energy current of the form δT 0i = µAδJ

i
A. For a finite current we

should integrate this over µA and obtain T 0i =
∫
µ′
A

dJi

dµ′
A
dµ′

A. It follows therefore that

the energy flux due to an external BA field is measured by the transport coefficient

σB
B = lim

kn→0

∑
i,j

ϵijn
i

2kn
⟨T 0iJ j

B⟩|ω=0 =
∫
µAdσ

B
AB + const. . (6)

We explicitly introduced a undetermined integration constant here. Evaluating the
Kubo formula we will see that the integrations constant is ∝ T 2 and non-zero only if
gravitational anomalies are present.

1In principle we should include also commutator terms in BB . They are however not important
if we want to study only two point functions of currents with vanishing external fields.
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The correlators are retarded ones but evaluated at zero frequency. For this reason
the order of the operators can be reversed and we we also can define

σV
A = lim

kn→0

∑
i,j

ϵijn
i

2kn
⟨J i

AT
0j⟩|ω=0 (7)

Although it is clear that σB
A = σV

A they describe different transport phenomena.
Whereas σB

A describes the generation of an energy flux due to an external BA field,

σV
A describes the generation of the current J⃗A due to an external field that sources

T 0i. It is not difficult to convinces oneself that the field in question is the so-called
gravito-magnetic field defined by a variation of the (flat) metric of the form

ds2 = −dt2 + 2A⃗gdtdx⃗+ dx⃗2 . (8)

If we linearize gravity with this metric A⃗g acts indeed like a normal abelian vector
potential. We might therefore call the new transport coefficient σV

A a “chiral gravito-
magnetic” conductivity giving rise to a “chiral gravito-magnetic effect”. In a fluid a
second, and somewhat more down-to earth interpretation is available. The flow of a
relativistic fluid is characterized by the fluid four-velocity uµ. In the restframe of the
fluid but in the background of a gravito-magnetic potential we have uµ = (−1, v⃗) =

(−1, A⃗). Therefore the gravito-magnetic field can also be calculated as the curl of

the velocity field B⃗g = ∇⃗ × v⃗. It is therefore natural to interpret σV
A as the response

in the current due to a vortex in the fluid, i.e. as a “chiral vortical conductivity”.
Since now we have convinced ourselves that vortices (or gravito-magnetic fields) in

the fluid might generate currents it comes as no surprise that they also will generate
an energy flux and that the corresponding conductivity will be given by

σV = lim
kn→0

∑
i,j

ϵijn
i

2kn
⟨T 0iT 0j⟩|ω=0 (9)

In a hydrodynamic framework we can summarize our findings in the constitutive
relations

T µν = (ϵ+ P )uµuν + Pηµν +Qµuν +Qνuµ , (10)

Jµ
A = nAu

µ +Nµ
A . (11)

with the first order in derivatives terms

Nµ
A = σB

ABB
µ
B + σV

AΩ
µ , (12)

Qµ = σB
AB

µ
A + σV

AΩ
µ . (13)

For simplicity of the expressions we have dropped here the usual dissipative terms re-
lated to shear and bulk viscosities or electric conductivity. The equilibrium quantities
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ϵ, P, nA are energy density, pressure and charge densities and we defined the (covari-
ant) magnetic fields Bµ

A = ϵµνρλuν∂ρAλ,A and vorticity vector Ωµ = ϵµνρλuν∂ρuλ. The
gravito-magnetic Lorentz force on a test particle of mass m is 2

F⃗ = m.v⃗ × B⃗g . (14)

It follows that the work done by the gravito-magnetic field on a test particle is W =∫
F⃗ .v⃗dt = 0 just as in the case of a usual magnetic field. Since neither a magnetic nor a

gravito-magnetic field (or a vortex) do work on the system these constitutive relations
describe dissipationless transport. This property and the related T-invariance of the
transport have recently been emphasized in [39, 40] where these constitutive relations
have been generalized to higher dimensions as well.

We also note that the fluid velocity in the hydrodynamic derivative expansion
suffers from ambiguities. Indeed we can always redefine uµ → uµ + δuµ and declare
δuµ to be of the same order as Qµ and Nµ. Choosing δuµ = −Qµ/(ϵ+ P ) effectively
removes Qµ from the constitutive relation of the energy-momentum tensor and defines
the so called Landau frame. The current is then given by

Nµ = ξBABBB + ξVAΩ
µ (15)

with the Landau frame transport coefficients

ξBAB = σB
AB − nA

ϵ+ P
σB
B , (16)

ξVA = σV
A − nA

ϵ+ P
σV , (17)

2.1 Weak coupling

Our aim is now to evaluate these Green-Kubo’s formulas in a theory of free right-
handed fermions Ψf transforming under a global symmetry group G generated by
matrices (TA)

f
g. We denote the generators in the Cartan subalgebra by HA. Chem-

ical potentials µA can be switched on only in the Cartan subalgebra. Furthermore
the presence of the chemical potentials breaks the group G to a subgroup Ĝ. Only
the currents that lie in the unbroken subgroup are conserved (up to anomalies) and
participate in the hydrodynamics. The chemical potential for the fermion Ψf is given
by µf =

∑
A qfAµA, where we write the Cartan generator HA = qfAδ

f
g in terms of its

eigenvalues, the charges qfA. The unbroken symmetry group Ĝ is generated by those
matrices T f

A g fulfilling

T f
A gµ

g = µfT f
A g . (18)

There is no summation over indices in the last expression. From now on we will
assume that all currents J⃗A lie in directions indicated in (18). We define the chemical

2See [38] but note that our definition of the gravito-magnetic potential differs by a factor of 2.
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potential through boundary conditions on the fermion fields around the thermal circle
[41], Ψf (τ) = −eβµ

f
Ψf (τ − β) with β = 1/T . Therefore the eigenvalues of ∂τ are

iω̃n + µf for the fermion species f with ω̃n = πT (2n + 1) the fermionic Matsubara
frequencies. A convenient way of expressing the currents is in terms of Dirac fermions
and writing

J i
A =

N∑
f,g=1

T g
A fΨgγ

iP+Ψ
f , (19)

T 0i =
i

2

N∑
f=1

Ψf (γ
0∂i + γi∂0)P+Ψ

f , (20)

where we used the chiral projector P± = 1
2
(1± γ5). The fermion propagator is

S(q)f g =
δf g

2

∑
t=±

∆t(iω̃
f , q⃗)P+γµq̂

µ
t , (21)

∆t(iω̃
f , q) =

1

iω̃f − tEq

, (22)

with iω̃f = iω̃n + µf , q̂µt = (1, tq̂), q̂ = q⃗
Eq

and Eq = |q⃗|. We can easily include

left-handed fermions as well.
The relevant Green’s function for the chiral magnetic can be evaluated with stan-

dard finite temperature techniques (see [42] for details). The results for the different
conductivities are neatly summarized as

σB
AB =

1

4π2
dABCµ

C , (23)

σV
A =

1

8π2
dABCµ

BµC +
T 2

24
bA , (24)

σV =
1

12π2
dABCµ

AµBµC +
T 2

12
bAµ

A . (25)

The result shows that these conductivities are non-zero if and only if the theory fea-
tures anomalies. Let us come back now to the above mentioned integration constants.
We see that in they are fixed to a particular form proportional to T 2 with a coeffi-
cient that coincides with the gravitational anomaly coefficient. Additional terms of
the form T 3 are allowed on dimensional grounds in σV [32], CPT invariance forbids
these terms however and indeed they don’t show up in the Green-Kubo formulas.

In vacuum the anomaly appears on the level of three point functions. In the
presence of external sources for the energy momentum tensor and the currents this is
conveniently expressed through [35, 36, 37]

∇µJ
µ
A = ϵµνρλ

(
dABC

32π2
FB
µνF

C
ρλ +

bA
768π2

Rα
βµνR

β
αρλ

)
. (26)
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Note that the gravitational anomaly is actually fourth order in derivatives and there-
fore a naive counting argument would suggest that it can not contribute to first order
hydrodynamics. It is however more useful to count derivatives acting on the connec-
tions Aµ

a and Γρ
µν . In this way the Riemann tensor is first order in derivatives just

like the gauge field strength. Since this transport coefficients seem to be intimately
related to anomalies it is tempting to speculate that they are not renormalized as we
switch on interactions. We will investigate this question in the next section.

2.2 Strong coupling

As is well known gauge theories at infinitely strong coupling can be investigated
through the gauge-gravity correspondence. It is therefore interesting to see if the
anomalous conductivities can be obtained also from a strong coupling calculations
based on the action

S =
1

16πG

∫
d5x

√
−g

[
R + 2Λ− 1

4
FMNF

MN

+ϵMNPQRAM

(
κ

3
FNPFQR + λRA

BNPR
B

AQR

)]
+ SGH + SCSK , (27)

SGH =
1

8πG

∫
∂
d4x

√
−hK , (28)

SCSK = − 1

2πG

∫
∂
d4x

√
−hλnMϵMNPQRANKPLDQK

L
R , (29)

where SGH is the usual Gibbons-Hawking boundary term and DA = hB
A∇B is the

covariant derivative on the four dimensional boundary. The most important fact
about this action is the presence of two Chern-Simons terms, one a pure gauge field CS
term and the second one a mixed gauge-gravitational CS-term. The action depends
therefore explicitly on the gauge field AM and is gauge invariant only up to a boundary
term of the form

δS =
1

16πG

∫
∂
d4x

√
−hϵmnkl

(
κ

3
F̂mnF̂kl + λR̂i

jmnR̂
j
ikl

)
. (30)

where R̂ is the induced curvature on the boundary. This is indeed of the form of the
anomaly and we can match the CS couplings to the anomaly coefficients

− κ

48πG
=

b

96π2
, (31)

− λ

16πG
=

d

768π2
. (32)

In this simple model there is only one U(1) symmetry and therefore the anomaly
coefficients are simply b =

∑
qi and d =

∑
q3I . where qi are the charges of the chiral

fermions of the dual field theory.
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As background we chose the charged AdS black brane solution with metric and
gauge field

ds2 = r2
(
−f(r)dt2 + dx⃗2

)
+

r2

f(r)r2
, f(r) =

(
1− M

r4
+

Q2

r6

)
, (33)

A =

(
β − µr2H

r2

)
dt . (34)

The chemical potential is related to the charge by µ =
√
3Q/r2H and is defined as the

energy needed to bring a unit charge from the boundary behind the horizon. The
background value of the temporal component of the boundary gauge field β has to
be distinguished from it along the lines explained in [19].

Standard gauge-gravity techniques [43, 44, 45] can now be employed in order to
calculate the relevant Green’s functions. It is straightforward although slightly tedious
due to the complexities of the gauge-gravitational CS-term (see [46]). In any case it is
reassuring to find precisely the form of (24)-(25) specialized to the case of a single U(1)
theory. This can be taken as a strong hint pointing towards a non-renormalization of
the anomalous conductivities.
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