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1 Introduction

‘The strong interactions comprise a richer field than the set of phenomena that we
have learned to describe in terms of perturbative QCD or the (near-) static non-
perturbative domain of lattice QCD ( ...) It may well be that interesting unusual
occurrences happen outside the framework of perturbative QCD-happen in some col-
lective, or intrinsically nonperturbative way.’

It is in these terms that the Resource Letter: Quantum Chromodynamics, arXiv:
1002.5032v2 [hep-ph], of February 26, 2010, concludes its overall review of the most
salient achievements realized in QCD.

In a recent article [1] a curious new property was observed concerning the QCD
fermionic scattering amplitudes, which was dubbed ‘effective locality’. That property
can be phrased as follows: If one considers two scattering quarks, then the gauge
invariant summation of all the non-abelian gluonic interactions between them, ‘boils
down’ to a local interaction between the two fermionic currents, of the contact-type.
This is of course a non-expected result because, ordinarily, integrations of elementary
field degrees of freedom result in highly non-local and non-trivial structures, and the
‘effective locality’ denomination, which sounds like an oxymoron, accounts for this
rather unusual circumstance.

Approximations were used in [1], though, such as the Eikonal approximation and
the neglect of the fermionic determinant (i.e., the approximation of ‘quenching’).
The question then naturally arises to know wether this ‘effective locality’ is or isn’t
an artefact of the approximations being used.

Remarkably enough, it turns out that all of the approximations that were used
in [1] can be relaxed, each, and that the effective locality property of the QCD
fermionic scattering amplitudes still holds [2]. The following statement can accord-
ingly be proposed: In any Quark/Quark (or Anti-Quark) scattering amplitude, the
full gauge-invariant sum of cubic and quartic vectorial gluonic interactions, including
fermionic loops, results into a local contact-type interaction; this local interaction is
mediated by a tensorial field structure which is antisymmetric both in Lorentz and
color indices.
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This non-perturbative property of QCD could therefore be worth exploring, in
particular, in relation to the non-perturbative sector of QCD and its expected physical
characteristics such as color confinement, chiral symmetry breaking, quark binding
potentials etc..

In this presentation, however, we will rather focus on some of the technical aspects
which come about in the derivation and exploitation of that QCD effective locality
property, because they govern the consequences that can be drawn from them.

Some of the results to be dealt with in the sequel are sound and established,
whereas other parts are still the matter of ongoing work, and should accordingly be
taken as preliminary [4].

2 The QCD generating functional

Within standard functional notations, and standard functional manipulations [6], the
QCD generating functional can be written as

Z[j, η, η̄] = N e
i
2

∫
jDc(ζ)j

∫
d[χ] e

i
4

∫
χ2

eDA e
i
2

∫
χF+ i

2

∫
AD−1

c (ζ)A (1)

× ei
∫
η̄Gc[A]η eL[A]

∣∣∣
A=
∫

Dc(ζ)j

where N is a normalization constant, and the jµ and ηα, η̄δ stand for bosonic and
fermionic sources respectively (the subscript c means ‘causal’, and doesn’t differ from
the most customary Feynman prescription). The ‘Linkage Operator’,

DA = − i
2

∫
d4x d4y

δ

δAaµ(x)
D(ζ)
c

∣∣∣ab
µν

(x− y)
δ

δAbν(y)

involves the covariant gluonic propagator, with gauge parameter ζ,

D(ζ)
c

∣∣∣ab
µν

= δab(−∂2)−1

[
gµν − (1− ζ)

∂µ∂ν
∂2

]
(2)

The χ-field appearing in Z[j, η, η̄] is here to linearize the original F 2- dependence of
the original QCD Lagrangian density:

e−
i
4

∫
F 2

= Nχ
∫

d[χaµ ν ] e
i
4

∫
χ2+ i

2

∫
χµ νa Faµ ν (3)

Proceeding in this way, the Aµ-gauge field dependences are made gaussian instead of
cubic and quartic, and the interest is that the linkage operations can be carried out
exactly.

In (1), the original fermionic fields have been integrated out: This has given rise
to the term involving the fermionic propagator Gc[A] in the gauge field background
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configuration A, as well as to the logarithm of the fermionic determinant, L[A], that
is,

Gc(x, y |A) = 〈x|[m+ γµ (∂µ − i g Aaµ λa)]−1|y〉
and,

L[A] = ln[1− i g (γ Aλ)Sc] , Sc = Gc[0]

3 On a puzzling constraint of δ(4)(ū(s2)− u(s1))

The property of effective locality is not readable on the generating functional itself,
but on the ‘fermionic momenta’ of the Z[j, η, η̄]-distribution, that is on the full set
of 2n-point fermionic Green’s functions (though equivalent, and thus not a crucial
difference at this stage, a form of the effective action is under investigation, on which
effective locality can be read off directly: This will matter instead, when this formu-
lation of the QCD amplitudes will possibly be promoted to the status of the most
dual QCD formulation).

A point is that, in order to be able to display the property of effective locality, one
must devise convenient enough representations for the functionals Gc[A] and L[A].
Schwinger-Fradkin’s representations have been used so far, with, for example, for a ‘
mixed’ (configuration and momentum space) expression of Gc[A],

〈p|Gc[A]|y〉 = e−ip·y i
∫ ∞

0
ds e−ism

2

e−
1
2
Trln (2h)

×
∫
d[u]{m− iγ · [p− gA(y − u(s))]} e

i
4

∫ s
0
ds′ [u′(s′)]2 eip·u(s)

×
(
eg
∫ s
0
ds′σ·F (y−u(s′)) e−ig

∫ s
0
ds′ u′(s′)·A(y−u(s′))

)
+

and likewise for L[A]. In the representation above, one has

h(s1, s2) = s1Θ(s2 − s1) + s2Θ(s1 − s2) , h−1(s1, s2) =
∂

∂s1

∂

∂s2

δ(s1 − s2)

and in the framed expression one has σµν = [γµ, γν ]. Note that this expression ends
up with a subscript ‘+′ meaning that time ordering with respect to s′ is in order,
because of the Lie-algebra valuation of the gauge fields Aµ. Eventually, u(s′) is the
Fradkin’s field variable,

uµ(s) =
∫ s

0
ds′ vµ(s′) , uµ(0) = 0 (4)

On mass shell, vµ(s) can be interpreted as the particle 4-velocity pµ(s)/m. Even in
the simplified case of a quenched and eikonal approximation [1], the full derivation of
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the effective locality property cannot be repeated here: Its complete non-approximate
derivation can be found in [2]. We will here focus on some important technical details
whose control matters a lot if one wishes to start thinking of non-perturbative QCD
out of reliable results [4].

As a typical and important part of a 4-point fermionic function, one gets in an
exponential the argument

+
i

2
g
∫

d4w
∫ s

0
ds1

∫ s̄

0
ds2 u

′
µ(s1) ū′ν(s2) (5)

×Ωa(s1) Ω̄b(s2) (f · χ(w))−1
∣∣∣µν
ab

× δ(4)(w − y1 + u(s1)) δ(4)(w − y2 + ū(s2))

This expression is obtained at the approximation of quenching and by neglecting
quark’s spins: The full non-approximate expression though, would manifest exactly
the same technical intricacy as the one under consideration, and this is why the point
can be dealt with on this simplified example.

Now, how should we think of

δ(4)(w1 − y1 + u(s1)) δ(4)(y1 − y2 + ū(s2)− u(s1)) (6)

That is, basically, how should one interpret such a factor as

δ(4)(ū(s2)− u(s1)) ? (7)

At face value, at any given couple of values (s1, s2) ∈ ]0, s]×]0, s̄], and any couple
of arbitrary functions (u, ū), each belonging to some infinite dimensional functional
space, the probability of coincidence of u(s1) with ū(s2) is likely to be infinitesimally
small if not zero.

On the other hand, a somewhat heuristic manipulation of (7) would suggest to
write

δ(ū0(s2)− u0(s1))δ(ūL(s2)− uL(s1)) =
δ(s1)δ(s2)

|u′L(0)||ū′0(0)|
(8)

where it is assumed that the u, ū Fradkin’s fields are C1 (]0, s], ]0, s̄]→ R4). Out of
δ(4)(ū(s2)− u(s1)), and in view of (4), this leads to a remaining constraint of

δ(2)(~y1⊥ − ~y2⊥) := δ(2)(~b)

where ~b is the impact parameter, or transverse distance between the two scattering
quarks. This δ(2)(~b) is of course an intriguing factor. For example, it has been
suggested [2] that this strange factor has been generated through the calculation
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because of some lurking surreptitious element, inherent to an implicit perturbative
hypothesis: That of the existence of asymptotic quark states. This point of view
leads to a change of δ(2)(~b) into a modified impact parameter distribution of form,

δ(2)(~b)→ ϕ(b) =
µ2

π

1 + ξ/2

Γ( 1
1+ξ/2

)
e−(µb)2+ξ , R 3 ξ � 1

where µ is a typical mass term used to calibrate the transverse momenta distribu-
tions of quarks inside a given bound state: In the transverse plane, bound quarks
are endowed with transverse momenta taken as independent random variables, expo-
nentially suppressed above a given mass parameter µ. First fits, with respect to the
model pion Q− Q̄ and the model nucleon QQQ, indicate a value of µ pretty close to
the pion mass, and a value of ξ on the order of 0.1 [7].

That is, starting from quark propagation as ordinarily conceived, à la Gc(x, y|A),
in the non-perturbative bound context, one could be lead to think of quark prop-
agation in terms of Levy-flights, a picture which in view of color confinement, may
look rather appealing indeed (Levy flights distributions are generalizations of gaus-
sian distributions for independent random variables, complying with the ‘central limit
theorem’).

Whatever its interpretation, though, the latter will be ruined if (8) does not
provide a reliable enough evaluation of (7).

In order to deal with that issue, one may skip to the most achieved realization
of a functional space, that is to the Wiener functional space [5]. Then, the following
theorem can be proven:

Theorem: For all couple (s1, s2) ∈ ]0, s]×]0, s̄],

m⊗m
(
{(u, ū) ∈ C0,s

0 × C
0,s̄
0 | u(s1) = ū(s2)}

)
= 0

m⊗m
(
{(u, ū) ∈ C0,s

0 × C
0,s̄
0 | u(0) = ū(0) = 0}

)
= 1

with m, the Wiener measure on C0,s
0 whereas m⊗m is taken as the Wiener measure

on the product of spaces C0,s
0 ×C

0,s̄
0 , endowed with the topology product. This is made

possible thanks to the independence of the random variables u and ū.

This theorem proves that the left hand side of (8) is indeed proportional to
δ(s1)δ(s1). Then dimensional and symmetry arguments complete the right hand side
of (8) . The proof is as follows.

Let A be the set {(u, ū) ∈ C0,s
0 × C

0,s̄
0 | u(s1) = ū(s2)}. One has A =

⋂∞
n=1 An,

where

An = {(u, ū) ∈ C0,s
0 × C

0,s̄
0 | − 1

n
≤ u(s1)− ū(s2) ≤ +

1

n
}

Because of the obvious inclusion, ∀n,An+1 ⊂ An, one can write,

m⊗m(A) = lim
n→∞

m⊗m(An)
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Now, Xn ≡ m⊗m(An) is given by

Xn=m⊗m{(u, ū) ∈ C0,s
0 × C

0,s̄
0 | u(s1)− 1

n
≤ ū(s2) ≤ u(s1) +

1

n
}

=
∫ +∞

−∞

dx√
2πs1

e
− x2

2s1

∫ x+ 1
n

x− 1
n

dy√
2πs2

e
− y2

2s2

≡
∫ +∞

−∞

dx√
2πs1

e
− x2

2s1 fn(x)

Since

| 1√
2πs1

e
− x2

2s1 fn(x)| ≤ 1√
2πs1

e
− x2

2s1

one gets X∞ = 0, as a mere consequence of the Dominated convergence theorem.

The presence of this surprising factor of δ(2)(~b) is thus unavoidable, and that issue
bounces back and forth with the related emergence of the ξ parameter: Again, if this
parameter is really an unavoidable output of this approach, more work is in order so
as to make explicit the relations of ξ appearing in the confining potential between a
pair of quarks separated by a distance r, to wit,

V (r) ' ξµ(µr)1+ξ (9)

to the levy-flight propagation modes of confined quarks, as well as to an unexpected
non-commutative geometry aspect of the transverse plane.

4 A fruitful equivalence

Let F(A) stand for some functional of the Aµ-gauge-field. In QED, one has the long
known (abelian) equivalence of

e−
i
2

∫
δ
δA

Dc
δ
δA F(A)|A=0

= N
∫

d[A] e
i
2

∫
AD−1

c AF(A) (10)

which is nothing else, indeed, that an expression of a Wick’s theorem underlying
structure. For the very same reason (Wick’s Theorem), the same equivalence extends
to the non-abelian case of QCD where the abelian Aµ becomes Aaµ, and where Dc is
given by the gluonic propagator (2), in a covariant gauge.
• A consequence of some concern of (10) is that the QCD property of effective

locality can be displayed by using the left hand side of (10), whereas the equivalent
right hand side does not allow one to ever detect it [2].

• Itself, the QCD effective locality property, could allow one to recognize some-
what the intrinsic perturbative character of the QCD BRST generating functional, as
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recognized recently by C. Becchi himself [3]. In here, if one introduces Fadeev-Popov
ghost fields so as to quantize the theory while preserving its full gauge-invariance,
unitarity, and factoring out the infinite volume gauge group orbit, then, the effective
locality property seems to become out of reach. And not very surprisingly then, a
reminiscence of the original covariant gauge dependence shows up in the final ex-
pressions of the QCD amplitudes. This is most suggestive of the non-perturbative
character of that effective locality property, as well as it could inspire some new ap-
proach to the Gribov-Singer copies long standing issue [4]. Note that the unfathomed
problem of non-perturbative quantization is also lurking here ..

5 A non-abelian simplification

This brings about a further remarkable (non-abelian) simplification. Effective locality
in effect, allows one to define the infinite dimensional functional integrations over
Halpern’s field χaµν configuration space: That is, functional integrals with measure
written symbolically as,

∫
d[χ] =

∏
i∈M

N2−1∏
a=1

3∏
µ<ν,0

∫
d[χaµν ](xi) (11)

eventually reduce to ordinary Lebesgue integrations over finite-dimensionalRn-spaces.
As well known, such a reduction is not possible in general, and is here made possible
thanks to the effective locality property of QCD.

In order to catch some intuition of this interesting non-abelian simplification, one
has to resort to the standard trick of the generating functional construction, splitting
spacetime in an infinite series of spacetime cells centered at given points [8]. Effective
locality determines a unique point, say w0, where the interaction takes place, whereas
all of the other spacetime cells will accordingly yield contributions that cancel out
with their proper normalization. As a result, in the concrete realization of Wiener
functional space, it is easy to see that the 6× (N2−1) infinite-dimensional functional
integrations get reduced to a Rn integration because a functional like

{χ} 7→ F (. . . χaµν(w0) . . .)

depend solely on the values n-functions take at a given point w0.
Rather clear intuitively [1], a rigorous proof can be given in Wiener functional

space by making use of an adapted form of the Wiener’s integration formula [5],

∫
W
f (x(s1), .. , x(sn)) dm(x) =

∫
Rn

f (u1, .., un) e
−
∑n

1

(uj−uj−1)2

2(sj−sj−1)√
s1..(sn − sn−1)

d ~Un (12)
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where ~Un is a shorthand for a Rn vector which would be made out of the n uj-values.
In (12), it is made manifest that one has an infinite dimensional functional space on
the left hand side, whereas integration is performed on a finite dimensional vectorial
space on the right hand side (the key result making that interesting equality possible
is the ‘measure image theorem’ [5]).

Further on, since the χaµν fields can be SU(3)- Lie-algebra valuated in the adjoint
representation:

χaµν →
N2−1∑
a=1

χaµνT
a

it is the full calculational power of ‘Random Matrix ’ that can be used.

6 A short sequence of fecond equivalences

Let H be an element of Mn(C), the algebra of hermitian n′ × n′ traceless random
matrices. Such a matrix can be parametrized with the help of its n eigenvalues, and
l other parameters pi, 1 ≤ i ≤ n2 − n − 1. Over the algebra Mn(C), we have the
measure,

d[H] =
∏

1≤i<j≤n
(Θi −Θj)

2dΘ1 .. dΘn′

× f(p) dp1 .. dpl

where f(p) = f(p1, .., pl) is an unspecified probability distribution for the set of pa-
rameters (p1, .., pl). However, a most interesting feature of this translation in terms of
random matrix, is that in the course of Green’s functions actual calculations, the de-
pendences over the p′is- extra parameters with unknown f(p) probability distribution,
factor out and cancel in the normalization, leaving integrations over the eigenvalue’s
spectra only.

To summarize, we have the following equivalence∫
d[A] e

i
2

∫
AD−1

c AF(A)
A→NA

= e−
i
2

∫
δ
δA

Dc
δ
δA F(A)|A=0

where the superscript A→ NA means that the long known Abelian equivalence ex-
tends to the Non Abelian case of QCD. Then, in a second step, relying on this
equivalence one can write∫

d[A] e
i
2

∫
AD−1

c AF(A)
EL
= N ′

∫
Wn

∏
d [χaµν(w0)] e

i
4

∑
(χaµν(w0))2 (. . .) G(χ(w0))

where the dots stand for subsidiary integrations on Fradkin fields and other Lagrange
multipliers, and where the specific form of the right hand side expression is due to the
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effective locality property (meant by the superscript EL). At 4 spacetime dimensions
and with SU(3), the functional integration is to be performed on the direct product
of 6× (N2 − 1) ‘standard Wiener functional spaces’ [5].

Eventually, in the case of every 2n-point fermionic correlators, by Lie algebra
valuating the χ-fields, and with the help of some convenient changes of variables, one
can re-express the QCD amplitudes under a form that takes advantage of ‘Random
Matrix’, and lends itself to concrete calculations∫

d[A] e
i
2

∫
AD−1

c AF(A)
F→L
= N ′′

∫
Mn(C)

d[H] δ(TrH) e
i

4CA
Tr (H)2

(. . .)G(H)

where CA = N , and where the superscript of F → L means that we have passed from
an infinite dimensional functional space (F ) to a finite product of ordinary Lebesgue
(L) integrals, in agreement with the non-abelian simplification of Section 5, itself a
consequence of effective locality. It turns out that in the right hand side, only the
spectrum of the random matrix H enters into play.

7 Conclusion

Effective locality seems to be an exact property of the full non-approximate QCD
theory, which has been overlooked for decades because functional differentiation, in-
stead of functional integration, is a necessary procedure to be followed in order to
display it.

However remarkable in itself, what effective locality means is perhaps something
wider: Indeed, a most dual expression of ordinary QCD amplitudes may have been
achieved in the spirit of what had been proposed in [9], in the pure Yang Mills case.
If one looks at things in this way, then, effective locality is but an inherent feature of
a proper dual formalism, and nothing else.

Of course, the strict dual relations, like g ↔ 1/g, which are satisfied in the pure
Yang Mills case of [9], have here to be enlarged so as to account for the fact that
the full QCD amplitudes display a much richer structure in terms of scaling laws in
g than in the pure Yang Mills case. To wit, we have

i

2

∫
d4x Q(x) · (KS + g(f ·χ))−1 (x) · Q(x)

with
O(Q) = O(1) +O(g)

and where the spin related contributions scale as follows

O(KS) = O(g2)
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where we have, in the pure Yang Mills case,

i

2g

∫
d4x ∂λχaλµ(x) ·

(
(f ·χ)−1

)µν
ab

(x) · ∂σχbσν(x)

Clearly much work is needed in order to explore the consequences of that unex-
pected property of the QCD amplitudes, at both qualitative and quantitative lev-
els. In the former case, for example, it is interesting to see the light that this non-
perturbative approach to QCD sheds on the difference between pure Yang Mills and
full QCD theories. To our knowledge at least, we do not know of any other approach
able to discriminate between them in this way. Likewise, it is encouraging to observe
that, aside from some structural properties that go in the sense of known results [10],
first simple calculations come out in compliance with other known results too: Such is
the case of the already mentionned confining potential of (9). But one may also pro-
pose an explicit construction of a model neutron-proton binding to form a deuteron,
and the result can be displayed as the following picture:

-10

-5

 0

 5

 10

 0  1  2  3  4  5

V (x) = V0(2− x2) exp[−(1/2) x2]

The potential must go negative for large r, with parameters appropriate to form a
deuteron of Binding Energy = 2.2 MeV. This result closely resembles the average
of Jastrow’s 1951 singlet and triplet potentials. To our knowledge, this is the first
example of Nuclear Physics from basic QCD.
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Discussion

E. Iancu (CEA Saclay): : The field χaµν is anti-symmetric, isn’t it?

Grandou: : Yes it is ... However the effective resulting structure melts together
internal and external degrees into an overall symmetric structure (see E. Iancu’s talk)

A. Jevicky (Brown University): : I think that V.P. Nair, in 2 + 1 spacetime
dimensions, obtained results that look similar to yours.

B. Müller (Duke University): : Do you have anything like a ‘string tension’ in
term of which to calculate a meson mass, for example?

Grandou: : In the plane transverse to the collision axis, a mass parameter must
be introduced so as to describe and limit the transverse momentum distribution of
the scattering quarks, and masses can be obtained from this parameter. There are
reasons to think that this mass term should be on the order of the π-meson’s mass,
still, this is just a conjecture. Calculations are certainly in order so as to check its
reliability, but it is true that first approximate calculations fit it.

B. Müller (Duke University): : Can you calculate analytically?

Grandou: : At least as long as fermionic loops are neglected (if not quark’s spins
altogether, but this has to be checked), it is quite remarkable that calculations can
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be carried through analytically, by means of ‘ Random Matrices’. Beyond these two
approximations, I do not know yet.
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