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1 Introduction

Over the last few years a lot of progress has been made in understanding the structure
multi-loop multi-leg scattering amplitudes in the planar N = 4 Super Yang-Mills
(SYM) theory, both at weak and at strong coupling. At the heart of this progress are
a set of dualities which state that, loosely speaking, scattering amplitudes in N = 4
SYM are equal to Wilson loops and correlations functions of certain gauge invariant
operators [2, 3, 4, 5].

The duality between scattering amplitudes and Wilson loops was first uncovered
at strong coupling, where it was shown that n-point color-ordered amplitudes with
a special helicity assignment for the external gluons, the so called maximally-helicity
violating (MHV) amplitudes, are equal to Wilson loops computed along a lightlike
polygonal contour [1]. A similar duality was then also found to hold on the weak cou-
pling side [6], and has by now been proven to hold for all one-loop MHV amplitudes [7],
as well as for the four, five, and six-point two-loop amplitudes [8, 9, 10, 11, 12]. Re-
cently, a supersymmetric version of the Wilson loop has been proposed [13, 14] which
reproduces correctly the integrand of loop amplitudes in N = 4 SYM, hence extending
the duality to non-MHV cases.

The lightlike polygonal Wilson loops dual to scattering amplitudes possess a (dual)
conformal symmetry. This symmetry is, however, broken by the cusp singularities
of the Wilson loops, themselves dual to the infrared divergences of the scattering
amplitude. The (logarithms of the) Wilson loops then satisfy an anomaly equation,
whose solution is given by the cusp anomalous dimension multiplied by the one-loop
correction to the Wilson loop, augmented by an arbitrary finite function of conformal
ratios, termed the remainder function. For four and five edges, the conformal sym-
metry forces the remainder function to be zero, whereas it is known to be non-zero
starting from six edges. Improving our understanding of multi-loop multi-leg scat-
tering amplitudes in N = 4 SYM is thus equivalent to increasing our knowledge of
Wilson loop remainder functions.

In this paper we give a review of the currently available results for remainder
functions at two-loops and beyond. The paper is organized as follows: In Section 2
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we give a review of Wilson loops in planar N = 4 SYM. In Section 3 we review the
available analytic results at two-loops for the hexagon remainder function in general
kinematics and for all remainder functions in special two-dimensional kinematics,
before commenting on recent development beyond two-loops in Section 4. Finally, in
Section 5 we draw our conclusions.

2 Wilson loops in N = 4 SYM

Wilson loops are defined through the path-ordered exponential,

W [Cn] = Tr P exp
[

ig
∮

Cn

dxµAµ(x)
]

, (1)

where Cn denotes an n-edged polygon. The cusps of the polygon are denoted by xi,
i = 1, . . . , n, and the edges correspond to the momenta pi = xi − xi+1 in the original
scattering amplitude. Momentum conservation,

∑n
i=1 pi = 0, then forces the polygon

to close, provided that we make the identification xn+1 = x1.
Through the non-abelian exponentiation theorem [15, 16], the vacuum expectation

value of a Wilson loop can be written as an exponential,

〈W [Cn]〉 = 1 +
∞∑

L=1

aLW (L)
n = exp

∞∑

L=1

aLw(L)
n , (2)

where the coupling is defined as a = g2N

8π2 . At one-loop level, the duality between
scattering amplitudes and Wilson loops states that these two quantities are equal up
to a constant [6, 7],

w(1)
n = m(1)

n − n
ζ2

2
+ O(ǫ) , (3)

where m(1)
n denotes the one-loop MHV amplitude rescaled by the tree amplitude,

given as a sum of two-mass easy box functions [17]. The conformal Ward identities
imply the following expression for w(L)

n [9],

w(L)
n (ǫ) = f (L)(ǫ) w(1)

n (2ǫ) + C(L) + R(L)
n + O(ǫ) , (4)

where f (L)(ǫ) is related to the L-loop correction to the cusp anomalous dimension,
C(L) is a constant and R(2)

n , termed the remainder function, is a finite function of
conformal cross ratios,

uij =
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1

, (5)

where x2
ij = (xi − xj)

2, but is not constraint by conformal symmetry otherwise and
must hence be computed.
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3 Analytic results for two-loop remainder func-

tions

As already mentioned in the introduction, the first non-trivial remainder function
R

(2)
6 appears in the two-loop correction to the polygonal Wilson loop with six lightlike

edges. R
(2)
6 is a totally symmetric function of the three conformally invariant cross

ratios

u1 = u13 =
x2

13 x2
46

x2
36 x2

41

, u2 = u14 =
x2

15 x2
24

x2
14 x2

25

, u3 = u25 =
x2

26 x2
35

x2
25 x2

36

, (6)

but its functional form is not fixed otherwise. The first fully analytic result for this
quantity was obtained by Del Duca, Smirnov and the author in Ref. [18, 19], where
all the integrals that contribute to the two-loop correction to the hexagonal Wilson
loop were computed explicitly. The computation was made possible by exploiting the
fact that lightlike polygonal Wilson loops in N = 4 SYM are Regge exact [18], i.e., it
is enough to compute the analytic expression for the Wilson loop in some restricted
kinematical regime (the so-called Regge limit) where the computation is simpler, and
the expression obtained in this way is valid in general kinematics. The result of
Ref. [18, 19] was rather lengthy and expressed through a complicated combination
of multiple polylogarithms [20] with algebraic arguments involving square roots of
the kinematic invariants. It was later rewritten in a much more compact form by
Goncharov, Spradlin, Vergu and Volovich in Ref. [21] by using the symbol map, a
linear map S that associates a certain tensor to an iterated integral, and thus to
a multiple polylogarithm. In the following we give a very brief summary of the
symbol technique, referring to Ref. [21] for further details. As an example, the tensor
associated to the classical polylogarithm Lin(x) is,

S(Lin(x)) = −(1 − x) ⊗ x ⊗ . . . ⊗ x
︸ ︷︷ ︸

(n−1) times

. (7)

Furthermore, the tensor maps products that appear inside the tensor product to a
sum of tensors,

. . . ⊗ (x · y) ⊗ . . . = . . . ⊗ x ⊗ . . . + . . . ⊗ y ⊗ . . . . (8)

It is conjectured that all the functional identities among (multiple) polylogarithms
are mapped under the symbol map S to algebraic relations among the tensors. The
result obtained in Ref. [21] takes the very simple form

R
(2)
6 (u1, u2, u3) =

3∑

i=1

(

L4(x
+
i , x−

i ) − 1

2
Li4 (1 − 1/ui)

)

− 1

8

(
3∑

i=1

Li2 (1 − 1/ui)

)2

+
1

24
J4 + χ

π2

12
J2 + χ

π4

72
, (9)
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with x±

i = ui x
± and

x± =
u1 + u2 + u3 − 1 ±

√
∆

2u1u2u3

, (10)

where ∆ = (1 − u1 − u2 − u3)
2 − 4u1u2u3. Furthermore, the functions appearing in

Eq. (9) are defined by

L4(x
+, x−) =

3∑

k=0

(−1)k

(2k)!!
lnk(x+x−) (ℓ4−k(x

+) + ℓ4−k(x
−)) +

1

8!!
ln4(x+x−) , (11)

with

ℓn(x) =
1

2
(Lin(x) − (−1)nLin(1/x)) and J =

3∑

i=1

(

ℓ1(x
+
i ) + ℓ1(x

−

i )
)

, (12)

and

χ =

{

−2 , ∆ < 0 and u1 + u2 + u3 > 1 ,
1 , otherwise .

(13)

Finally, it was shown in Ref. [21] that the square roots in Eq. (10) can be interpreted
as cross ratios in momentum twistor space, e.g.,

x+
1 = −〈3456〉〈1245〉

〈1456〉〈2345〉 . (14)

Momentum twistors were introduced by Hodges in Ref. [22] and are four-component
objects Zi living in a three-dimensional complex projective space. They provide a
way to encode the kinematics of a massless scattering, the kinematic invariants being
related to the determinants formed out of four twistors,

x2
ij ∼ 〈(i − 1)i(j − 1)i〉 , (15)

with

〈ijkl〉 = det(Zi Zj Zk Zl) =








Z1
i Z1

j Z1
k Z1

l

Z2
i Z2

j Z2
k Z2

l

Z3
i Z3

j Z3
k Z3

l

Z4
i Z4

j Z4
k Z4

l








. (16)

For an introduction to momentum twistors we refer to Ref. [23].
Beyond six points at two-loops, no analytic expression for two-loop remainder

functions similar to Eq. (9) is currently known. However, if the kinematics is re-
stricted to two-dimensions (i.e., all the external momenta lie inside a common two-
dimensional subspace), it is possible to write down a closed form for all two-loop
remainder functions with an even number of edges1 [24, 25],

R(2)
n = −1

2

∑

S

ln ui1i5 ln ui2i6 ln ui3i7 ln ui4i8 − (n − 4)
π4

72
, (17)

1Note that there are no lightlike polygonal Wilson loops with an odd number of edges in two

dimensional kinematics
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where
S = {i1, . . . , i8 : 1 ≤ i1 < i2 < . . . < i8 ≤ n, ik − ik−1 = odd} . (18)

4 Remainder functions with more loops and legs

While the results presented in the previous section are the only fully analytic results
for remainder functions available at the moment, there is a vast activity in trying to
compute remainder functions with more loops and legs. In this context, the symbols
of all two-loop remainder functions have recently been computed [26], but the question
of finding the functions associated to these symbols is still open. Furthermore, the
symbols do not fix the function completely. Indeed, the symbol map has a non-
trivial kernel, and in particular all terms proportional to zeta values vanish under the
symbol map. Other approaches, based on an operator product expansion around the
collinear limit of scattering amplitudes [27], have also been considered and were shown
to reproduce the known analytic results for two-loop remainder functions presented
in the previous section [28, 29]. However, none of these approaches was able so far
to fix the functional form of the two-loop remainder functions in general kinematics
beyond six points.

Beyond two-loops, conjectures have been made for the symbols of the three-loop
six-point remainder function in general kinematics [30] and for the three-loop octagon
in two-dimensional kinematics [31]. Making some assumptions on the entries that
should appear in the symbol, the authors of Ref. [30, 31] constrained the form of the
symbol by imposing physical constraints. However, in both cases the constraints were
not enough to fix the form of the symbol completely, but it could only be fixed up
to some free parameters that cannot be determined solely from some purely general
considerations.

5 Conclusion

In this paper we provided a review of two-loop remainder functions in N = 4 SYM, a
necessary building block to improve our understanding of multi-loop multi-leg scat-
tering amplitudes. We started by reviewing the available analytic results for two-loop
remainder functions at six-points in general kinematics and for all two-loop remain-
der functions in two-dimensional kinematics. Beyond these cases, however, no explicit
analytic results are currently known. While it was possible to determine the symbol
of the answer in some cases, we are still lacking the functional form of remainder func-
tions with more loops and / or legs. In the quest of gaining a deeper understanding of
what kind of functions could appear in higher-point two-loop cases, it was noted that
the scalar massless one-loop hexagon integral in D = 6 dimensions [32, 33] admits
a very simple and compact analytic expression, which is very close to the result (9)
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for the two-loop hexagon remainder function, albeit only involving polylogarithms of
lesser weight. This observation spurred the computation of scalar one-loop hexagon
integrals in D = 6 dimensions with massive external lines [34, 35], in the hope that
these functions should be related to higher-point two-loop remainder functions in a
similar way as the corresponding massless integral is related to the six-point remainder
function. The conclusion was that all these hexagon integrals admit a very compact
analytic expression very similar to the massless case, fostering our hope that similar
simple results must exist for all two-loop remainder functions in N = 4 SYM.
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