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1 Introduction

A PT -symmetric quantum theory is described by a (typically non-Hermitian) Hamil-
tonian that commutes with PT , where P represents space reflection and T represents
time reversal [1]. Hermitian Hamiltonians are boring because their energies are always
real. In contrast, PT -symmetric Hamiltonians are interesting because they usually
have a parametric region of unbroken PT symmetry in which the eigenvalues are all
real and a region of broken PT symmetry in which the some eigenvalues are complex
[2, 3]. These regions are separated by a phase transition which has been repeatedly
observed in laboratory experiments [4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

Standard examples of PT -symmetric quantum-mechanical Hamiltonians whose
eigenvalues are all real and positive are

H = p2 + ix3 (1)

and
H = p2 − x4. (2)

The D-dimensional Euclidean-space field-theoretic equivalents of these quantum the-
ories are described by the Lagrangians

L =
1

2
(∂φ)2 +

1

2
m2φ2 + igφ3 (3)

and

L =
1

2
(∂φ)2 +

1

2
m2φ2 − gφ4. (4)

The purpose of this article is to explain in heuristic field-theoretic terms why the
energy levels of these Hamiltonians are real. We will concentrate specifically on the
ground-state energies (free energies) of these models.
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2 Why a φ3 theory is bad but an iφ3 theory is good

It is well-known that the quantum-mechanical Hamiltonian

H = p2 + x3 (5)

is unacceptable because it does not possess a ground state. This is because the
potential V (x) = x3 is not bounded below. Let us try to understand how this problem
comes to light in a field-theoretic context.

The Lagrangian for the corresponding φ3 quantum field theory is

L =
1

2
(∂φ)2 +

1

2
m2φ2 + gφ3. (6)

The Feynman graphical rules for this quantum field theory are

vertex amplitude : −6g,

line amplitude :
1

p2 +m2
. (7)

The Feynman graphs contributing to the ground-state energy (the free energy) of
this quantum field theory are the connected vacuum graphs. There are two graphs of
order g2; these graphs are shown in Fig. 1. In Fig. 2 two connected vacuum graphs
of order g4 are shown. Note that vacuum graphs can only have an even number of
vertices.

Figure 1: Connected vacuum graphs of order g2 that contribute to the ground-state
energy of a D-dimensional φ3 quantum field theory.

If we combine the vacuum graphs to obtain the ground-state energy E0(g) of the
theory, we obtain a representation of E0(g) as a formal Taylor series in powers of g2:

E0(g) =
∞∑
n=0

Ang
2n. (8)
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Figure 2: Two of the connected vacuum graphs of order g4 that contribute to the
ground-state energy of a φ3 quantum field theory.

This series is divergent (it has a zero radius of convergence) because the coefficients
An have factorial growth [14, 15, 16, 17]. In fact, An grows for large n like n!. The
reason for the divergence of this series is simply that the graph amplitudes all have
the same sign (they are all positive numbers) and the number of graphs having n
vertices grows like n!.

If we try to use a summation technique such a Borel summation or Padé summa-
tion to sum the series in (8), we find that there is a cut in the g2 plane on the positive
axis. The discontinuity across this cut is the imaginary part of the ground-state en-
ergy. The fact that the energy is complex implies that the perturbative ground-state
is unstable. The life-time of the ground state is just the reciprocal of the imaginary
part of the ground-state energy.

There is a simple way to have a stable ground state in a cubic potential: We merely
replace g by ig and obtain the PT -symmetric Lagrangian in (3). The Feynman rules
for this Lagrangian are

vertex amplitude : −6ig,

line amplitude :
1

p2 +m2
. (9)

Using these Feynman rules, we find that the perturbation series for the ground-state
energy has the form

E0(g) =
∞∑
n=0

(−1)nAng
2n. (10)

Now the perturbation series alternates in sign and is Borel summable [18]. There is
no discontinuity across the cut in the g2 plane, and we conclude that the ground-state
energy is real! Of course, this conclusion is not a surprise for the case D = 1 (quantum
mechanics) because it was proved rigorously by Dorey, Dunning, and Tateo that the
eigenvalues of the Hamiltonian in (1) are all real [19, 20].
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This argument illustrates that the mechanism by which the eigenvalues of a cu-
bic potential with an imaginary coupling become real has a very simple heuristic
field-theoretic explanation. However, the argument is much more complicated and
interesting for the case of a quartic potential, as we now show.

3 Ground-state energy for a quantum field theory

with quartic coupling

Let us now consider a conventional quantum field theory with quartic coupling:

L =
1

2
(∂φ)2 +

1

2
m2φ2 + gφ4. (11)

The Feynman graphical rules for this quantum field theory are

vertex amplitude : −24g,

line amplitude :
1

p2 +m2
. (12)

Let us use these Feynman rules to calculate ground-state energy perturbatively.
In Fig. 3 we show the unique vacuum graph of order one that contributes to the
free energy. In Fig. 4 we display all three vacuum graphs of order two, but only
the first two graphs contribute to the free energy because the third vacuum graph is
disconnected.

Figure 3: The only vacuum graph to first order in g that contributes to the free energy
of the Lagrangian in (11).

When the coupling constant g is positive (the case of the conventional φ4 theory),
the vertex amplitude in (12) is negative. Thus, the perturbative expansion

E0(g) =
∞∑
n=0

Bng
2n (13)

for the ground-state energy is an alternating series. As in the case of a cubic in-
teraction, the coefficients Bn for this series grow like n! for large n and the series is
divergent. However, because the terms in the series alternate in sign, the Borel sum of
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Figure 4: The three vacuum graphs of order two for the Lagrangian in (11). Only
the first two graphs contribute to the free energy; the third is not connected, and
therefore does not contribute.

the series does not have a cut on the positive axis in the complex-g plane. Hence, the
ground-state energy is real when g is positive. This result is not surprising because
it is well known that the spectrum for a quantum field theory with a positive quartic
self-interaction is bounded below.

Let us follow the procedure used in Sec. 2 for the case of a cubic selfinteraction and
replace g by −g. By this formal procedure, we replace the Lagrangian in (11) by that
in (4). Now, the perturbation series in (13) no longer alternates in sign. Thus, we
seem to reach the conclusion that the Borel sum of this perturbation series now has
a cut on the positive-g axis and that the ground-state energy is complex. However, if
this simple and convincing argument were correct, it would contradict the proof by
Dorey, Dunning, and Tateo [19, 20] that the energy levels of the quantum-mechanical
theory in (2) are real. It is hard indeed to see the flaw in this argument and the point
of this paper is to explain this subtle aspect of PT quantum theory.

In brief, we show in Sec. 4 that while the ground-state energy of an igφ3 is en-
tirely perturbative in character, the ground-state energy of a −gφ4 theory has both
perturbative and nonperturbative contributions. We demonstrate that when the non-
perturbative contributions are included, they exactly cancel the discontinuity across
the cut in the Borel sum of the divergent perturbation series (13) and, as a result,
the ground-state energy is purely real!

4 Perturbative and nonperturbative contributions

to the free energy of a −gφ4 field theory

As a warm-up calculation, we begin by looking at the cubic igφ3 theory. Then, we
examine a −gφ4 theory.
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4.1 The Cubic Theory

We begin by showing that there are no nonperturbative contributions to the ground-
state energy of an igφ3 theory. We construct this theory as a functional integral
and for simplicity in this paper we work only in zero dimensions. When D = 0,
the functional-integral representation becomes an ordinary integral. In order for a
Euclidean-space functional integral of the general form Z =

∫
Dφ exp

(
−
∫
dDxL

)
to

converge, it is necessary for the path of integration to terminate in the appropriate
Stokes wedges in the complex-φ plane. For the cubic theory in zero dimensions this
functional integral takes the form

Z =

∫
C

dφ exp

(
−1

2
m2φ2 − igφ3

)
, (14)

where the integration contour C is shown in Fig. 5. Note that the Stokes wedges
lie below the real axis in the complex-φ plane and are left-right symmetric (PT
symmetric). These wedges have an angular opening of 60◦ and are centered about
−30◦ and −150◦, as shown in Fig. 5.

We take g to be small (g << 1) and rescale the integral in (14) to obtain

Z =
1

g

∫
C

dφ exp

[
− 1

g2

(
1

2
m2φ2 − iφ3

)]
. (15)

We then perform a steepest-descent evaluation of the integral. There are two saddle
points, a perturbative saddle point at the origin φ = 0 and a nonperturbative saddle
point on the positive-imaginary axis at φ = 1

3
im2. (We refer to the saddle point at

φ = 0 as perturbative because it gives rise to the Feynman perturbation series.) Note
that the nonperturbative saddle point plays no role in the asymptotic evaluation of
the integral because, as we can see from Fig. 5, the steepest-descent contour that
terminates in the Stokes wedges is the hyperbola

y =
1

6

(
m2 −

√
m4 + 12x2

)
, (16)

where φ = x + iy. This hyperbola only passes only through the saddle point at the
origin and the path terminates in the centers of the two Stokes wedges. The steepest
path through the nonperturbative saddle point is the hyperbola

y =
1

6

(
m2 +

√
m4 + 12x2

)
. (17)

This path is actually a steepest-ascent path, and it cannot terminate in the Stokes
wedges. Thus, it plays no role in the calculation of the behavior of Z for small g.
Evidently, the behavior of Z for small g is entirely perturbative in character and it is
completely determined by the Feynman-diagram expansion in (10).
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Figure 5: The complex-φ plane for the integral in (14). The perturbative and non-
perturbative saddle points, the Stokes wedges, and steepest paths through the saddle
points are shown. The relevant steepest-descent path passes through the perturba-
tive saddle point at the origin. The path through the other saddle point on the
positive-imaginary axis plays no role in the small-g asymptotic behavior of Z.

4.2 The Quartic Theory

Now let us consider the PT -symmetric quartic quantum field theory described by

Z =

∫
C

dφ exp

(
−1

2
m2φ2 + gφ4

)
. (18)

The contour of integration C terminates in two Stokes wedges of angular opening 45◦,
one centered about −45◦ and the other centered about −135◦. These Stokes wedges
incorporate the PT symmetry of the boundary conditions. The Stokes wedges are
shown in Fig. 6. Treating g as small, we expand Z as a formal series in powers of g:

Z =

∫
C

dφe−m
2φ2/2

∞∑
n=0

gnφ4n

n!
. (19)
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Using Watson’s Lemma [18], we now interchange orders of integration and summation
and obtain the (divergent) weak-coupling asymptotic series expansion for Z:

Z ∼
√

2π

m

∞∑
n=0

gn(4n− 1)!

m4nn!
. (20)

Figure 6: The complex-φ plane for the integral in (18). The perturbative and non-
perturbative saddle points, the Stokes wedges, and steepest paths through the three
saddle points are shown. The steepest-descent path passes through all three saddle
points, the perturbative saddle point at the origin as well as the other two non-
perturbative saddle points on the real axis. All three saddle points are needed to
demonstrate that the small-g asymptotic behavior of Z is purely real.

Using the Stirling approximation n! ∼ nne−n
√

2πn for large n, we can replace the
series in (20) by the series

Z ∼ 1

m
√
π

∞∑
n=0

16ngnΓ(n− 1/2)

m4n
. (21)

We now perform a Borel sum of this series by introducing the identity

Γ(n− 1/2) =

∫ ∞
0

dt e−ttn−3/2 (n ≥ 1) (22)
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and interchanging orders of summation and integration. The result is

Z =
1

m
√
π

∫ ∞
0

dt
e−t

t3/2 (1− 16gt/m4)
. (23)

(This integral is divergent at t = 0, but we can ignore this because the divergence is
an artifact. It arises here because we have not bothered to exclude the n = 0 term in
the sum. What is at issue is the imaginary part of this integral, and the imaginary
part is not affected by the behavior at t = 0.)

Note that there is a discontinuity across the cut on the positive-g axis in the g
plane. To determine this discontinuity, we use the identity

1

x
= P

(
1

x

)
+ iπδ(x), (24)

where P indicates principal part. We find that

ImZ =

√
π

m

∫ ∞
0

dt e−tt−3/2δ
(
1− 16gt/m4

)
=

√
π

m

(
16g/m4

)3/2
exp

(
−m

4

16g

)
. (25)

Now let us perform a steepest-descent analysis of the integral in (18) for Z. We
begin by scaling out

√
g and obtain

Z =
1
√
g

∫
C

dφ exp

[
−1

g

(
1

2
m2φ2 − φ4

)]
. (26)

There are three saddle points, a perturbative saddle point at the origin φ = 0 and
two nonperturbative saddle points on the real-φ axis at φ = ±1

2
m. As is shown in

Fig. 6, the steepest-descent path emerges from the perturbative saddle point at the
origin and runs along the real axis until it hits the two nonperturbative saddle points.
Then it turns downward and runs along the hyperbolas

y = −
√
x2 −m2/4, (27)

which terminate as x→ ±∞ in the centers of the Stokes wedges.
A Gaussian approximation to the contribution of Z from the nonperturbative

saddle points is imaginary and it cancels exactly the imaginary part of the perturbative
contribution to Z in (25), which comes from the discontinuity across the cut in the
Borel sum. This explains at a quantum-field-theoretic level the mechanism behind
the remarkable property that non-Hermitian PT -symmetric quantum theories have
real eigenvalues.

The author is supported by the U.K. Leverhulme Foundation and by the U.S. De-
partment of Energy.
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