Measurement of the W+Jets Production Cross Section with ATLAS

Imai Jen-La Plante for the ATLAS Collaboration
Enrico Fermi Institute
University of Chicago
Chicago, IL 60637, U.S.A.

1 Introduction

The associated production of jets with a W boson provides a testing ground for perturbative quantum-chromodynamics (pQCD) and an important background to other interesting processes in the Standard Model and beyond. Cross section measurements in both the electron and muon decay modes of the W boson are used to make a precise test of predictions from Monte Carlo simulations and next-to-leading order (NLO) pQCD calculations, extending an earlier ATLAS measurement [1] to a data sample of approximately $33 \mathrm{pb}^{-1}$ [2] of proton-proton collisions produced at the LHC.

2 Method

W bosons are identified by requiring a well-measured lepton (e, μ) with transverse momentum $p_{\mathrm{T}}>20 \mathrm{GeV}$, missing transverse energy $>25 \mathrm{GeV}$, and transverse mass $m_{\mathrm{T}}>40 \mathrm{GeV}$. Figure 1 shows the data and expected backgrounds as a function of jet multiplicity. Jets are reconstructed using the anti- k_{T} algorithm with distance parameter $\mathrm{R}=0.4$ and required to have angular separation $\Delta R>0.5$ relative to the lepton, rapidity $|y|<2.8$, and $p_{\mathrm{T}}>20 \mathrm{GeV}$. Results are quoted for this restricted phase space and unfolded to particle level, correcting for all known detector effects.

Figure 1: Uncorrected jet multiplicity for electron (left) and muon (right) channels.

3 Results \& Discussion

The measurements include cross sections as a function of jet multiplicity and ratios of those cross sections, as well as differential cross sections as a function of jet multiplicity, jet transverse momentum, and the sum of transverse momenta of energetic jets and leptons in each event, H_{T}. All results are compared with particle level predictions for the same jet and lepton phase space, including NLO pQCD calculations from BlackHat-Sherpa [3] for up to three jets, and good agreement is observed. This is illustrated by Fig. 2, showing the cross section as a function of the first jet p_{T}, which suggests stronger agreement with NLO predictions (MCFM [4], shown for the jet p_{T} range measured in [1], and BLACKHAT-ShERPA) than leading order ones.

Figure 2: $\mathrm{W}+$ jets cross section as a function of the p_{T} of the first jet in the event for electron (left) and muon (right) channels. Uncertainties due to parton distribution functions, scale choice, and uncertainty in α_{s} are shown for BlackHat-Sherpa.

References

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 698 (2011) 325 [arXiv:1012.5382 [hep-ex]].
[2] G. Aad et al. [ATLAS Collaboration], ATLAS-CONF-2011-060.
[3] Berger, C. F. et al., Phys.Rev.D80 (2009) [doi:10.1103/PhysRevD.80.074036].
[4] Campbell, J. M. et al., Phys.Rev.D68 (2003) [doi:10.1103/PhysRevD.68.094021].

