Open bottom and charm production at ATLAS

M F Watson for the ATLAS Collaboration

School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; supported by a Royal Society Dorothy Hodgkin Fellowship.

1 Introduction

Results are presented for identified D and B mesons and b-jets, using data collected in 2010 by the ATLAS detector. The most important components of the detector for these analyses are the inner tracking detector and muon system, covering $|\eta|<2.5$ and $|\eta|<2.7$, respectively. Events are triggered with minimum bias, muon or jet triggers, depending on the channel under consideration [1]-[6].

2 D meson cross-sections

Charmed hadrons are produced in the fragmentation of charm or bottom quarks, and are identified in the decay modes $\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi_{\mathrm{s}}^{+} \rightarrow\left(\mathrm{K}^{-} \pi^{+}\right) \pi_{\mathrm{s}}^{+}, \mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+}$and $\mathrm{D}_{\mathrm{s}}^{+} \rightarrow \phi \pi^{+} \rightarrow\left(\mathrm{K}^{-} \mathrm{K}^{+}\right) \pi^{+}$, by considering all three-track combinations with suitable kinematic cuts, e.g p_{T} and $|\eta|$ of the tracks and $\mathrm{D}^{(*)}[1]$. The reconstructed mass distributions are fitted to extract the number of D meson candidates, from which total cross-sections and differential cross-sections in p_{T} and $|\eta|$ are extracted. The cross-sections in the kinematic range $p_{\mathrm{T}}\left(D^{(*)}\right)>3.5 \mathrm{GeV}$ and $\left|\eta\left(D^{(*)}\right)\right|>2.1$ are

$$
\begin{aligned}
\sigma^{v i s}\left(D^{* \pm}\right) & =285 \pm 16 \text { (stat.) })_{-27}^{+32} \text { (syst.) } \pm 31 \text { (lum.) } \pm 4 \text { (br.) } \mu \mathrm{b} \\
\sigma^{v i s}\left(D^{ \pm}\right) & =238 \pm 13 \text { (stat.) }{ }_{-23}^{+35} \text { (syst.) } \pm 26 \text { (lum.) } \pm 10 \text { (br.) } \mu \mathrm{b} \\
\sigma^{v i s}\left(D_{s}^{* \pm}\right) & =168 \pm 34 \text { (stat.) }{ }_{-25}^{+27} \text { (syst.) } \pm 18 \text { (lum.) } \pm 10 \text { (br.) } \mu \mathrm{b}
\end{aligned}
$$

where the systematic uncertainties include contributions from track reconstruction (material description), D meson selection, model dependence, signal fits, luminosity and branching ratios. Figure 1 illustrates the differential cross-sections for $\mathrm{D}^{* \pm}$, in which the data are seen to lie above the NLO predictions, but within the large theoretical (scale) uncertainties.

Figure 1: $\mathrm{D}^{* \pm}$ differential cross-sections as a function of p_{T} and $|\eta|$.

3 Exclusive B meson reconstruction

B mesons are reconstructed in the exclusive decay modes $\mathrm{B} \rightarrow \mathrm{J} / \psi+\mathrm{X}$, where J / ψ decays to $\mu^{+} \mu^{-}[2,3]$. Each J / ψ candidate must contain at least one "combined" muon, for which an inner detector track is matched to a track in the muon system.

In order to reconstruct the decay mode $\mathrm{B}^{ \pm} \rightarrow \mathrm{J} / \psi\left(\mu^{+} \mu^{-}\right) \mathrm{K}^{ \pm}[2]$, the muon tracks and an additional track are fitted to a common vertex, with a J / ψ mass constraint for the $\mu^{+} \mu^{-}$and the kaon mass assigned to the third track. The resulting $m_{\mathrm{J} / \psi \mathrm{K}^{ \pm}}$ mass distribution is enhanced with a transverse decay length cut and is fitted with an unbinned maximum likelihood fit (Gaussian signal and linear background) to extract the $\mathrm{B}^{ \pm}$mass and number of candidates, as seen in Figure 2. The fitted mass is consistent with expectation, and is independent of the B meson charge.

Figure 2: Mass fit for $\mathrm{B}^{ \pm} \rightarrow \mathrm{J} / \psi \mathrm{K}^{ \pm}$.

Figure 3: Mass fit for $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi$.

A similar analysis is performed for the channels $\mathrm{B}_{\mathrm{d}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{* 0}$ and $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi[3]$. Two additional tracks are combined with the J / ψ in a four-track fit, assuming the
decays $\mathrm{K}^{* 0} \rightarrow \mathrm{~K}^{+} \pi^{-}$or $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$. Cuts are applied to $M(\phi)$ or $M\left(\mathrm{~K}^{* 0}\right)$ and the signal is enhanced with a requirement on the decay time of the fitted secondary vertex. Figure 3 illustrates the observation of $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi$ and the maximum likelihood fit to the reconstructed mass. The fitted $\mathrm{B}_{\mathrm{d}}^{0}$ and $\mathrm{B}_{\mathrm{s}}^{0}$ masses, both with and without decay time cuts, are consistent with expectation.

4 B jet cross-sections

An enriched sample of jets containing B hadrons ("b-jets") can be obtained by requiring a displaced secondary vertex in the jet $[4,6]$. Jets are reconstructed using the anti- k_{t} algorithm with a cone size $R=0.4$, then the secondary vertex (SV0) algorithm attempts to find an inclusive vertex with tracks associated to the jet, using an iterative procedure. Secondary vertices are selected with a cut on the decay length significance, relative to the primary event vertex. The b-jet fraction in a sample of tagged jets is obtained from a binned likelihood fit to the vertex mass distribution, using Monte Carlo templates. The fits are performed in bins of jet p_{T} and rapidity, from which the differential b-jet cross-section can be measured. Efficiency corrections are evaluated with a soft muon tagging procedure, and bin-by-bin corrections for detector effects are applied. In events containing two tagged jets, the dijet cross-section is obtained from template fits to the sum of vertex masses. The systematic uncertainties on both cross-sections are dominated by the b-jet energy scale, and the efficiency and purity of b-jet tagging.

Figure 4 illustrates the differential cross-sections and compares them to Monte Carlo predictions. PYTHIA, which includes leading order and leading logarithm terms, is found to describe the shapes but not the normalisation, while the next-toleading order predictions of POWHEG show a steeper drop with p_{T} than in data. The POWHEG dijet cross-section lies above the measured values.

An alternative measurement of the b-jet cross-section uses soft muons to tag an enriched sample of b-jets [5,6]. Muons within a cone $\Delta R<0.4$ from the jet axis are considered, and the distribution of muon momentum relative to the jet axis, $p_{T}^{r e l}$, is fitted using templates. The b-jet fraction obtained in the fits is used to measure the differential cross-section as a function of jet p_{T}; see Figure 5. This measurement of the cross-section is consistent within uncertainties with the secondary vertex measurement, and with the predictions of POWHEG.

References

[1] ATLAS Collaboration, ATLAS-CONF-2011-017, 12 March 2011, available at https://twiki.cern.ch/twiki/bin/view/AtlasPublic.
[2] ATLAS Collaboration, ATLAS-CONF-2010-098, 16 November 2010.
[3] ATLAS Collaboration, ATLAS-CONF-2011-050, 1 April 2011.
[4] ATLAS Collaboration, ATLAS-CONF-2011-056, 4 April 2011.
[5] ATLAS Collaboration, ATLAS-CONF-2011-057, 11 April 2011.
[6] References [4] and [5] have been updated and combined in "Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at $\sqrt{s}=7 \mathrm{TeV}$ with the ATLAS detector", arXiv:1109.6833 [hep-ex], submitted to EPJC (Sept. 2011).

Figure 4: b-jet cross-section (left) and $b \bar{b}$-dijet cross-section (right). The PYTHIA predictions are scaled by 0.52 .

Figure 5: b-jet cross-section using the $p_{T}^{\text {rel }}$ method.

