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Abstract. We review two systematic bottom-up analyses of MSSM quivers recently performed by
the authors. We extend the analysis of [1] by including constraints arising from proton decay via
dimension 5 operators and present all four-stack quivers in the Madrid embedding which satisfy
this additional constraint. Furthermore, we investigate and make precise the interplay between mass
hierarchies obtained via factorizable Yukawa textures and the presence of dimension 5 proton decay
operators in MSSM orientifold compactifications. We discuss this issue in a five-stack quiver, first
presented in [2], which exhibits proper mass hierarchies and no rapid proton decay.
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INTRODUCTION

There have been extensive efforts [3, 4, 5, 1, 2, 6], recently, to construct semi-realistic
bottom-up MSSM quivers realized by intersecting D-branes (and their T-dual pictures)1.
In these compactifications, the gauge groups arise from stacks of D6-branes that fill out
four-dimensional spacetime and wrap three-cycles in the internal Calabi-Yau threefold.
Chiral matter arises at the intersection of two different D6-brane stacks in the internal
space, and the multiplicity of the chiral matter is given by the topological intersection
number of the respective three-cycles.

Once the MSSM spectrum has been realized2, the next step is to investigate finer
details, such as the Yukawa couplings, which can be extracted from string amplitudes
[23, 24, 25, 26] and are typically suppressed by worldsheet instantons [12, 27]. While
worldsheet instantons can in principle account for the observed mass scales, a large
amount of fine-tuning is required to obtain realistic mass hierarchies and mixings. Fur-
thermore, they are of no help in generating couplings that are perturbatively forbidden
due to the violation of global U(1)’s, which are remnants of the generalized Green-

1 For reviews on this subject, see [7, 8, 9].
2 For original work on globally consistent non-supersymmetric intersecting D-branes, see [10, 11, 12,
13], and for chiral globally consistent supersymmetric ones, see [14, 15]. For supersymmetric MSSM
realizations, see [16, 17, 18], and for supersymmetric constructions within type II RCFT’s, see [19, 20].
The first local (bottom-up) constructions were discussed in [21, 22].



Schwarz mechanism. In the absence of other effects, the perturbative absence of Yukawa
couplings often gives rise to massless fermions, which is a phenomenological disaster.

Recently, it has been realized that D-brane instantons can break these global symme-
tries and generate otherwise forbidden couplings [28, 29, 30, 31]3. In Type IIA com-
pactifications, the relevant objects are so-called E2-instantons, which wrap a three-cycle
in the internal manifold and are point-like in spacetime. An instanton of this type can
generate a perturbatively forbidden superpotential term only if it compensates for the
global U(1) charges carried by the forbidden coupling. This instanton induced coupling
is suppressed by the classical action of the instanton, which depends on the volume of
the three-cycle that the instanton wraps. Thus, one naturally obtains a hierarchy between
perturbatively realized couplings and non-perturbatively induced couplings, and more
generally between two couplings generated by instantons carrying different global U(1)
charges.

Often times, the same instanton which generates a perturbatively forbidden, but de-
sired, coupling also gives rise to phenomenological drawbacks, such as the genera-
tion of R-parity violating couplings or a µ-term which is too large. In [1], the authors
present the entire class of globally consistent three-stack and four-stack MSSM D-brane
quivers which give rise to the MSSM superpotential, induced perturbatively or non-
perturbatively, and furthermore satisfy bottom-up constraints that ensure the absence of
major phenomenological drawbacks. The constraints ensure the absence of R-parity vi-
olating couplings on both the perturbative and non-perturbative level, a µ-term of the
right order, and that all MSSM fermions are massive. Moreover, the quivers are required
to exhibit a mechanism which explains the smallness of the neutrino masses.

In [5], the authors investigated how mass hierarchies arise in intersecting brane mod-
els, another very important phenomenological feature. In generating mass hierarchies,
they presented and utilized the mechanism of family splitting, where different matter
field families arise from different sectors in the D-brane spectrum. In such a case, some
entries in a given Yukawa texture might be perturbatively allowed, whereas others are
perturbatively forbidden and must be generated via D-instantons or higher order cou-
plings containing the VEV’s of standard model singlets. This mechanism allows for
Yukawa textures of a variety of different forms, which generically allow for interesting
mass hierarchical structures.

Another mechanism that naturally gives rise to mass hierarchies between different
families in D-brane compactifications was presented in [2] (see also [36, 3, 1]). In
this mechanism, non-perturbative effects generate a factorizable Yukawa texture, Y IJ ∼
Y IY J , which only gives mass to one family. In order to induce masses for the remaining
two families, the presence of two other instantons which wrap different cycles, but
have the same intersection pattern, is required. Due to the fact that the instantons wrap
different cycles in the internal manifold, they can account for the observed hierarchies.

Utilizing both family splitting and factorizable Yukawa textures for generating mass
hierarchies, the four-stack quivers of [1] were further examined in [2], with the conclu-

3 For a recent review on the D-instanton effects, see [32] and also [33, 34, 35].



sion that none exhibit proper4 mass hierarchies. Furthermore, in [2], five-stack models
were investigated and one of a few quivers with proper hierarchies was presented. This
quiver contains a dangerous dimension 5 proton decay operator uRuRdRER which is gen-
erated by an instanton, but the associated suppression factor is high enough to ensure that
the rate of proton decay due to the operator is below the current experimental bound. Fur-
thermore, a tension was noticed in the Madrid embedding between down-flavor quark
mass hierarchies obtained via factorizable Yukawa textures and the presence of proton
decay operators.

In this note, we extend the analysis performed in [1] by embedding the constraints
arising from proton decay via dimension 5 operators. We present all four-stack quivers
in the Madrid embedding which pass this further constraint and will see that none of the
four stack quivers give rise to the desired Yukawa textures. We also further investigate
the tension between the presence of these dimension 5 operators and the presence of
right-handed quarks transforming as antisymmetric representations of SU(3)C, which
can often often be utilized for giving mass hierarchies to either the up-quarks or down-
quarks via factorizable Yukawa textures. It turns out that in any globally viable MSSM
hypercharge embedding, the absence of right-handed quarks transforming as antisym-
metric representations of SU(3)C is sufficient to ensure that these dangerous operators
are perturbatively absent and are not non-perturbatively generated by an instanton whose
presence is required to generate a perturbatively forbidden, but desired, Yukawa cou-
pling. We discuss these ideas in the context of a five-stack quiver, first presented in [2],
which exhibits proper mass hierarchies and no rapid proton decay.

This note is organized as follows. In section , we present two mechanisms for obtain-
ing mass hierarchies in orientifold compactifications. In section , we explicitly discuss
the top-down and bottom-up constraints that we require quivers to satisfy. In section ,
we present current bounds on the suppression factors of dimension 5 operators due to
the bound on the lifetime of the proton. We also discuss the interplay between mass hi-
erarchies and proton decay. In section , we present all four-stack quivers in the Madrid
embedding which are consistent with the strong constraints laid out in section and an-
alyze whether or not these quivers give rise to realistic hierarchies via the two mecha-
nisms discussed in section . In section , we present an analysis of proton decay in the
aforementioned five-stack quiver with proper mass hierarchies.

MASS HIERARCHIES IN ORIENTIFOLDS

A number of mechanisms exist which give rise to mass hierarchies in orientifold com-
pactifications. We review5 two of them here, both of which are independent of geo-
metric specifics of the compactification manifold. A general feature exhibited by these
compactifications is that they exhibit global U(1)’s which are remnants of the Green-

4 We refer to a proper mass hierarchy as one that exhibits three families for the up-flavor quarks, down-
flavor quarks, and charged leptons, as well as a t-quark which is much heavier than all other MSSM matter
fields. Also note that, from this point on, we often refer to up-flavor and down-flavor quarks as up-quarks
and down-quarks, for the sake of brevity.
5 For a more in depth discussion of these mechanisms, see [2].



Schwarz mechanism and often forbid phenomenologically desired Yukawa couplings.
In such a case, these forbidden couplings may be generated by D-instantons [28, 30, 31]
or higher order couplings containing the VEV’s of standard model singlets φi [37, 38, 5],
provided that the global U(1) charges carried by these effects precisely cancel the
charges of the forbidden Yukawa coupling. The suppression factors associated with these
effects are e−Scl

E2 , where Scl
E2 is the classical action of the instanton, and ∏i

<φi>
MS

, respec-
tively. They can account for the suppression of particular Yukawa couplings and thus
might give an explanation for the fermion mass hierarchies of the MSSM. While both
mechanisms we discuss ultimately utilize these suppression factors to obtain mass hier-
archies, they are quite different from a physical and mathematical point of view.

In [5], the authors utilized the mechanism of family splitting to generate mass hier-
archies. In such a case, the fact that different families arise from different sectors in the
D-brane spectrum gives their Yukawa texture entries different charges under the global
U(1)’s. This might cause some entries of a given Yukawa texture Y IJ to be perturbatively
allowed, while others must be generated by a D-instanton or via higher order couplings.
For example, in the four-stack quiver with the Madrid hypercharge embedding given by

U(1)Y =
1
6

U(1)a +
1
2

U(1)c +
1
2

U(1)d , (1)

an MSSM quiver might contain two families of the right-handed down-flavor quarks, dR,
which transform as (a,c), one family of dR which transforms as (a,d), Hd transforming
as (b,c), and all three families of qL transforming as (a,b). In such a case, the down
quark mass matrix would take the form

M =




A A B
A A B
A A B



 (2)

where A and B carry different global U(1) charge, and thus are generated by different
instantons6. These instantons generically carry different suppression factors, since they
wrap different cycles in the internal manifold. In this case we would expect two down-
quark masses to have m$ A and one to have m$ B. Note well that this family splitting
mechanism can be implemented equally well when the forbidden couplings are gener-
ated either by D-instantons or higher order couplings containing the VEV’s of standard
model singlets.

Unlike the previous mechanism, the mechanism presented below is purely non-
perturbative. In [2], the authors utilize the fact that D-instanton effects often give rise
to factorizable Yukawa textures [36, 3, 1] to explain fermion mass hierarchies. We illus-
trate this mechanism with a concrete example. Consider three U(1) branes that exhibit

6 The perturbatively missing couplings might also be generated via higher order couplings, where the SM
singlets acquire a VEV. The consequences, however, are analogous to those of D-instantons. From now
on we assume the perturbatively missing couplings are generated by D-instantons.



the intersection pattern7

Iab = K Iac = 0 Ibc = K ,

where we denote fields arising from the ab sector as ΦI and fields arising from the bc
sector as Φ̃I . The superpotential term

ΦI
(1,−1,0) Φ̃J

(0,1,−1)

is perturbatively forbidden, where the subscript denotes the charge under the global
U(1)a, U(1)b and U(1)c, respectively. An instanton with the intersection pattern8

IE2a = 1 IE2b = 0 IE2c =−1 IN =2
E2b = 1 (3)

carries global U(1) charge QE2(a) =−1, QE2(b) = 0 and QE2(c) = 1. Such an instanton
exhibits four charged zero modes, namely λ a, λb, λ b and λc. Its action generically takes
the form

SE2 = Scl
E2 +Y IJ λ a ΦI Φ̃J λc +Y I λ a ΦIλb +Y J λ b Φ̃Jλc .

The contribution to the superpotential is calculated by performing the path integral over
all instanton zero modes

Ms

∫
d4xd2θ dλ a dλb dλ b dλc e−SE2,

where the Grassmann variables λb and λ b prevent the Y IJ term in the action from
contributing. The resulting instanton induced mass matrix is given by

MIJ = Y I Y J e−Scl
E2 Ms . (4)

Since this matrix factorizes, only one linear combination of ΦI Φ̃J becomes massive. An
additional K− 1 instantons with the intersection pattern (3) are required to ensure that
each family receives a mass. The associated masses depend on the suppression factors
of the instantons, which are generically of different order, since they wrap different
cycles in the internal manifold. Thus, mass hierarchies can also be explained by non-
perturbative effects which give rise to a factorizable Yukawa texture.

7 Our sign convention is that positive intersection number Iab = K correponds to K fields transforming as
(a,b). Elsewhere in the literature, the opposite convention is sometimes chosen.
8 Note that, for brevity’s sake, we have omitted discussion of the instanton without vector-like zero
modes, since it does not give rise to a factorizable Yukawa texture. For a more complete discussion of
this example, see [2].



TOP-DOWN AND BOTTOM-UP CONSTRAINTS

In this section, we briefly summarize the constraints we require D-brane quivers to
satisfy. For a more detailed description, we refer the reader to [1]. We distinguish
between the two different classes of constraints, top-down and bottom-up constraints.
The former include constraints on the chiral matter field transformation behavior arising
from tadpole cancellation and from the presence of a massless hypercharge U(1)Y . The
latter are due to experimental observations.

• All of the MSSM matter fields and the right-handed neutrino, apart from the Higgs
fields, appear as chiral fields at intersections between two stacks of D-branes.
Furthermore, the spectrum must contain no chiral exotics.

• As discussed in [1], tadpole cancellation, which is a condition on the cycles that
the D-branes wrap, imposes constraints on the transformation behavior of the chiral
matter. For a stack of Na D-branes with Na > 1, the constraints read

#(a)−#(a)+(Na−4)#( a)+(Na +4)#( a) = 0 , (5)

while for Na = 1 it is slightly modified and takes the form

#(a)−#(a)+5#( a) = 0 mod3 . (6)

We require that all D-brane stacks satisfy these conditions.
• The presence of a massless U(1)Y is also a condition on the cycles that the D-

branes wrap, which puts constraints on the transformation behavior of the chiral
matter, given by

∑
x %=a

qx Nx#(a,x)− ∑
x %=a

qx Nx#(a,x) = qa Na

(
#( a)+#( a)

)
(7)

for Na > 1 and

∑
x %=a

qx Nx#(a,x)− ∑
x %=a

qx Nx#(a,x) = qa
#(a)−#(a)+8#( a)

3
(8)

for Na = 1. We require that all D-brane stacks satisfy these conditions.
• We require that each quiver exhibits non-zero masses for all three families of the

up-quarks, down-quarks, and charged leptons.
• We forbid R-parity violating couplings on both the perturbative and non-

perturbative level.
• We require that there is no instanton needed to generate a Yukawa coupling which

also generates a tadpole NR.
• We rule out setups which lead to a large family mixing in the quark Yukawa

couplings [3, 4, 1].
• The D-brane quiver must allow for a mechanism which gives a µ-term of the

observed order.



• We require that the D-brane quiver exhibits a mechanism which accounts for the
smallness of the neutrino masses [28, 30, 39, 40, 41, 42, 43] .

• We require that the t-quark mass is at least two orders of magnitude larger than the
masses of any other MSSM matter field.

• If present, we require that the suppression of the dimension 5 operators qLqLqLL
and uRuRdRER is sufficient to satisfy the current bounds on proton decay, discussed
in section .

Fore more details on the constraints, we refer the reader to [1, 2]. In constrast to [1],
here we explicitly impose the proton decay constraint. Also, rather than marking them
with a ♣, we remove all quivers with too much family mixing.

A DISCUSSION OF PROTON DECAY

In this section, we discuss further the constraints which ensure the absence of rapid
proton decay due to dimension 5 operators. Such disastrous effects arise when the
dimension 5 operators

κ
Ms

qL qL qL L and
κ ′

Ms
uR uR dR ER (9)

are present in the superpotential with inadequate suppression. Choosing Ms $ 1018 GeV ,
the experimental upper bound on the proton lifetime requires that κ and κ ′ satisfy

κ,κ ′ ≤ 10−8 , (10)

as given, for example, in [44]. Thus, any quiver in which either of these couplings is
perturbatively realized exhibits rapid proton decay, since κ or κ ′ is O(1) in the absence
of extreme fine-tuning due to worldsheet instanton suppression. Such a quiver is ruled
out as unrealistic.

Fortunately, the operator qLqLqLL can never be perturbatively realized, since it will
always be charged under the global symmetry U(1)a arising from the color D-brane
stack. The coupling uRuRdRER, on the other hand, has a chance of being uncharged
under this symmetry, since in some hypercharge embeddings one of the right-handed
quarks might transform as antisymmetric of SU(3)C. This frequently occurs in quivers
with a Madrid-type hypercharge embedding, where the dR can transform in this fashion
if it arises at the intersection of the a-brane with its orientifold image.

Furthermore, even if these couplings are perturbatively forbidden, they might be in-
duced by an instanton which is required to generate one of the perturbatively forbidden,
but desired, Yukawa couplings. In each case, a careful analysis of the suppression fac-
tors associated with such instantons is required to determine whether or not the bounds
on κ and κ ′ in equation (10) are satisfied. A general rule of thumb, though, is that the
quiver does not exhibit rapid proton decay if the instanton which induces one of the
dimension 5 operators is required to induce the µ-term or a Dirac neutrino mass with



Dirac-like suppression9, since the suppression associated with these instantons is very
high. On the other hand, instantons required to induce Yukawa couplings for the up-
quarks, down-quarks, and charged leptons usually are not suppressed enough to satisfy
the bounds. Note that in the absence of right-handed quarks transforming as antisym-
metrics, the U(1)a charge of both dimension 5 operators is different than that of any
instanton required to generate an MSSM Yukawa coupling, and thus one does not have
to worry about a desired Yukawa coupling inducing instanton generating the dangerous
dimension 5 proton decay operators.

We emphasize that these statements apply to all globally viable10 hypercharge em-
beddings, rather than just the Madrid embedding, which was the only case discussed
in [2]. Very precisely, this means that in any globally viable MSSM hypercharge em-
bedding, the absence of right-handed quarks transforming as antisymmetrics of SU(3)C
is sufficient to ensure that these dangerous operators are perturbatively absent and are
not non-perturbatively generated by an instanton whose presence is required to generate
a perturbatively forbidden, but desired, Yukawa coupling. For the purpose of obtain-
ing mass hierarchies, however, right-handed quarks transforming as antisymmetrics are
quite useful, since it is only in this case that the corresponding Yukawa texture might be
factorizable. Thus, there is a tension between a quiver obtaining quark mass hierarchies
via a factorizable Yukawa texture and it not exhibiting dangerous dimension 5 operators
which lead to rapid proton decay.

SEMI-REALISTIC FOUR-STACK MADRID QUIVERS

In [1], the authors presented all four-stack D-brane quivers which realize the MSSM
and satisfy most11 of the constraints discussed in section . Of the roughly 10,000
setups that satisfied the constraints due to tadpole cancellation and the presence of a
massless U(1)Y , only about 70 pass the phenomenological bottom-up constraints. The
most fruitful hypercharge embedding is the Madrid embedding12,

U(1)Y =
1
6

U(1)a +
1
2

U(1)c +
1
2

U(1)d, (11)

which accounts for 45 of those solutions. This success is not entirely surprising, given
that, in this embedding, a given MSSM matter field might transform in a number of

9 A “Dirac-like suppression" is one that explains the smallness of the neutrino masses without employing
the seesaw mechanism [43] and is expected to be of the order 10−14−10−11.
10 Many MSSM hypercharge embeddings exist, though only a small subset are able to satisfy the con-
straints due to tadpole cancellation and masslessness of U(1)Y . The latter are what we mean by “globally
viable" hypercharge embeddings, which are dicussed in an appendix in [2].
11 Recall that, compared to [1], here we also impose the constraints which ensure the absence of dangerous
dimension 5 operators. Therefore, the number of quivers listed above which satisfy the constraints in [1]
would be further cut down by this additional constraint.
12 Note that, in constrast to [1], we have chosen the Madrid embedding to have all plus signs. This is
for consistency with the extended Madrid embedding convention in [2] and here. The sign in question
is on the coefficient of U(1)d , and quivers can be mapped from one convention to the other simply by
exchanging d ↔ d′ as stacks and sending d ↔ d in the transformation behavior.



different ways. For this hypercharge, the potential transformation behavior of the MSSM
matter fields is given by

qL : (a,b), (a,b)
uR : (a,c), (a,d)
dR : a, (a,c), (a,d)
L : (b,c), (b,c), (b,d), (b,d)

ER : (c,d), c, d

NR : b, b , (c,d), (c,d)
Hu : (b,c), (b,c), (b,d), (b,d)
Hd : (b,c), (b,c), (b,d), (b,d) .

We extend the analysis of [1] by requiring that D-brane quivers in the Madrid embed-
ding do not give rise to rapid proton decay. Furthermore, in contrast to [1], we explicitly
remove quivers which exhibit an unrealistic CKM matrix. It is often quite obvious from
the Yukawa textures YqLHuUR and YqLHddR whether or not this is the case. For example,
the quark textures might take the form

YqLHuuR =




P P P
A A A
A A A



 YqLHddR =




B B B
P P P
P P P



 , (12)

where the entries P correspond to perturbatively realized couplings and the entries A and
B correspond to perturbatively forbidden couplings that are generated with suppression
by instantons. Since the perturbatively realized couplings are generically of higher order,
matrix structures of this form immediately imply that there is too much family mixing,
and thus an unrealistic CKM matrix.

With regard to proton decay, it turns out that any four-stack quiver in the Madrid
embedding satisfying the previously discussed top-down and bottom-up constraints
exhibits uRuRdRER at the perturbative level if and only if it has a right-handed down-
flavor quark, dR, transforming as antisymmetric of SU(3)C. For all other quivers none
of the dangerous dimension 5 operators is realized perturbatively. Moreover, in these
quivers no instanton whose presence is required to induce some of the perturbatively
missing MSSM couplings generates the dimension 5 operators qLqLqLL or uRuRdRER.
In Table 1, we display all setups which satisfy all the constraints presented in section .
We emphasize again that there is no quiver with dR transforming as an antisymmetric
of SU(3)c, realized here as a, due to the interplay between antisymmetrics and rapid
proton decay.

Note that, in comparison to [1], which did not omit quivers with too much family
mixing or rapid proton decay, there are far fewer solutions here. One drastic consequence
of the additional constraints is that the mass hierarchy of the surviving quivers tends to
be worse. Specifically, one quiver of [1], discussed explicitly in [2], nearly exhibited
proper mass hierarchy, with the only deficiency being the existence of two up-quark



hierarchies, rather than three. This quiver does not survive the additional constraints,
and moreover all of the quivers in Table 1 have additional mass hierarchical deficiencies.
These deficiencies might include a perturbatively realized down-quark or charged lepton
coupling, or only two hierarchies for the down-quarks or charged leptons. This further
motivates the examination of five-stack quivers.

TABLE 1. Spectra for the setups with U(1)Y = 1
6U(1)a + 1

2U(1)c + 1
2U(1)d .

Solution qL dR uR L ER NR Hu Hd

(a,b) (a,b) (a,c) (a,d) (a,c) (a,d) (b,c) (b,d) (b,d) (c,d) c d b b (c,d) (c,d) (b,c) (b,c) (b,d) (b,d) (b,c)

1† 3 0 3 0 0 3 0 0 3 0 0 3 2 0 0 1 0 0 0 1 1

2 3 0 3 0 0 3 0 0 3 1 0 2 2 0 1 0 0 0 0 1 1

3 3 0 3 0 2 1 0 0 3 2 1 0 2 0 1 0 0 0 0 1 1

4 3 0 3 0 2 1 0 0 3 0 2 1 2 0 1 0 0 0 0 1 1

5 3 0 3 0 3 0 0 0 3 2 1 0 2 0 0 1 0 1 0 0 1

6 3 0 3 0 3 0 0 0 3 0 2 1 2 0 0 1 0 1 0 0 1

7 3 0 3 0 3 0 0 0 3 1 2 0 2 0 1 0 0 1 0 0 1

8♥ 0 3 0 3 0 3 3 0 0 2 0 1 0 3 0 0 0 0 1 0 1

9♥ 0 3 0 3 0 3 3 0 0 0 1 2 0 3 0 0 0 0 1 0 1

10 0 3 0 3 1 2 3 0 0 3 0 0 0 3 0 0 1 0 0 0 1

11 0 3 0 3 1 2 3 0 0 1 1 1 0 3 0 0 1 0 0 0 1

12† 0 3 0 3 3 0 3 0 0 0 3 0 0 3 0 0 1 0 0 0 1

A QUIVER WITH PROPER MASS HIERARCHIES AND NO
DANGEROUS PROTON DECAY

Though the quivers in the previous section are compatible with all bottom-up constraints
arising from experimental observations, they all fail to exhibit proper mass hierarchies.
Extending the quiver by an additional U(1) D-brane stack might give rise to setups
which exhibit proper hierarchies. This possibility was examined in [2], where it was
shown that there are only three possible five-stack hypercharge embeddings which might
possibly give rise to the experimentally observed inter- and intra-family mass hierarchies
while satisfying all the top-down and bottom-up constraints. The most promising of
these is the extended Madrid embedding,

U(1)Y =
1
6

U(1)a +
1
2

U(1)c +
1
2

U(1)d +
1
2

U(1)e . (13)

With this embedding, there are a few quivers which not only exhibit proper mass
hierarchies, but also overcomes the serious issue of the dangerous dimension 5 operators
which lead to rapid proton decay. We now present one such quiver13, first discussed in
[2], where the origin and transformation of the MSSM matter fields is given in Table 2.

As discussed in section , the absence of right-handed quarks transforming as antisym-
metric representations of SU(3)C is sufficient to ensure that the dangerous dimension
5 operators qLqLqLL and uRuRdRER are perturbatively absent and are not generated by
an instanton whose presence is required to induce one of the perturbatively missing,
but desired, Yukawa couplings. Thus, as is evident from the spectrum, this quiver might

13 A detailed discussion in [2] showed that this quiver exhibits proper mass hierarchy. Here, instead of
discussing mass hierarchical specifics, we focus on the interplay between mass hierarchies and proton
decay.



TABLE 2. A quiver in the extended Madrid embedding.
Sector Matter Fields Transformation Multiplicity Hypercharge

ab qL (a,b) 1 1
6

ab′ qL (a,b) 2 1
6

ac′ uR (a,c) 2 − 2
3

ad′ uR (a,d) 1 − 2
3

aa′ dR a 3 1
3

bc′ Hu (b,c) 1 1
2

bd′ L (b,d) 3 − 1
2

be′ Hd (b,e) 1 1
2

ce′ ER (c,e) 2 1

ce NR (c,e) 1 0

dd′ ER d 1 1

de NR (d,e) 2 0

potentially exhibit rapid proton decay. In fact, the presence of this transformation behav-
ior for the right-handed down-flavor quarks is precisely the reason why they have three
mass hierarchies in this quiver. A closer look reveals that both operators, qLqLqLL and
uRuRdRER, are absent on perturbative level. Moreover, the coupling qLqLqLL is not in-
duced by any of the instantons which are required to generate the perturbatively missing
MSSM couplings.

On the other hand, the dimension 5 operator uRuRdRER is generated by an instanton
with the intersection pattern14

IE2a = 0 IE2b = 0 IE2c = 0 IE2d =−1 IE2e = 1 IN =2
E2c = 1 .

whose presence is required to induce a Dirac neutrino mass term. Whether or not this
operator gives rise to rapid proton decay depends entirely on whether or not the suppres-
sion factor κ ′ $ e−Scl

E2 satisfies the bound in equation (10). The value of the suppression
factor itself is determind by which Yukawa coupling the instanton is required to induce.
Here the instanton induces the Dirac neutrino mass term and thus the suppression fac-
tor is expected to be in the range 10−14− 10−11, which is more than enough to evade
the bound on proton lifetime. Moreover, the presence of the instanton is not required,
since experiments have not yet ruled out the possibility of a massless neutrino family. In
that case, the dimension 5 operator uR uR dR ER would not be induced by any of the in-
stantons generating the perturbatively missing MSSM couplings. We conclude that this
quiver does not suffer from rapid proton decay, and thus provides a viable setup which
gives rise to realistic phenomenology.

14 Here we assume that the instanton wraps an orientifold invariant cycle and thus exhibits the right
uncharged zero mode structure to give contributions to the superpotential [45, 46, 47, 40].
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