Strange stars with different quark mass scalings

Ang Li\(^1\); Ren-Xin Xu\(^2\); Ju-Fu Lu \(^1\)

\(^1\)Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, China
\(^2\)School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

24 November 2009

ABSTRACT

We investigate the stability of strange quark matter and the properties of the corresponding strange stars, within a wide range of quark mass scaling. The calculation shows that the resulting maximum mass always lies between 1.5\(M_\odot\) and 1.8\(M_\odot\) for all the scalings chosen here. Strange star sequences with a linear scaling would support less gravitational mass, and a change (increase or decrease) of the scaling around the linear scaling would lead to a higher maximum mass. Radii invariably decrease with the mass scaling. Then the larger the scaling, the faster the star might spin. In addition, the variation of the scaling would cause an order of magnitude change of the strong electric field on quark surface, which is essential to support possible crusts of strange stars against gravity and may then have some astrophysical implications.

Key words: dense matter — elementary particles — equation of state — stars: interiors

1 INTRODUCTION

In studying the equation of state (EOS) of ordinary quark matter, the crucial point is to treat quark confinement in a proper way. Except the conventional bag mechanism (where quarks are asymptotically free within a large bag), an alternative way to obtain confinement is based on the density dependence of quark masses, then the proper variation of quark masses with density would mimic the strong interaction between quarks, which is the basic idea of the quark mass-density-dependent model.

Originally, the interaction part of the quark masses was assumed to be inversely proportional to the density (Fowler et al. 1981; Chakrabarty 1991; Chakrabarty 1993; Chakrabarty 1996), and this linear scaling has been extensively applied to study the properties of strange quark matter (SQM). However, this class of scaling is often criticized for its absence of a convincing derivation (Peng 2000). Then a cubic scaling was derived based on the in-medium chiral condensates and linear confinement (Peng 2000), and has been widely used afterwards (Lugones & Horvath 2003; Zheng et al. 2004; Peng et al. 2006; Wen et al. 2007; Peng et al. 2008). But this deriving procedure is still not well justified since it took only the first order approximation of the chiral condensates in medium. Incorporating of higher orders of the approximation would nontrivially complicate the quark mass formulas (Peng 2009). In fact, there are also other mass scalings in the literatures (Dey et al. 1998; Wang 2000; Zhang et al. 2001; Zhang & Su 2002; Zhang & Su 2003).

Despite the big uncertainty of the quark mass formulas, this model, after all, is no doubt only a crude approximation to QCD. For example, the model may not account for quark system where realistic quark vector interaction is non-ignorable. However, we can not get a general idea of how the strong interaction acts from the fundamental theory of strong interactions in hand, i.e. QCD. Until this stimulating controversy is solved, we feel safe to take the pragmatic point of view of using the model. This work does not claim to answer how Nature works. However, it may shed some light on what may happen in interesting physical situations. In this respect, the quark mass-density-dependent model has been, and still is, an interesting laboratory.

The aim of the present paper then, is to study in what extent this scaling model is allowed to study the properties of SQM. To this end, we treat the quark mass scaling as a free parameter, to investigate the stability of SQM and the variation of the predicted properties of the corresponding strange stars (SSs) within a wide scaling range. Furthermore, we try to demonstrate the general features of SSs related to astrophysics observations, whatever the value of the free parameters.

The paper is organized as follows. In Section 2 we describe the formalism applied in calculating the EOS of the SQM in the quark mass-density-dependent model. In Section 3 we present the structure of the stars made of this matter, including mass-radius relation, spin frequency, electric properties of the quark surface. Finally in Section 4 we address our main conclusions.

2 THE MODEL

As usually done, we consider SQM as a mixture of interacting \(u, d, s\) quarks, and electrons, where the mass of the quarks \(m_q\) \((q = u, d, s)\) is parametrized with the baryon number density \(n_b\) as follows:

\[m_q = m_q^0 + \alpha \rho \]
where C is a parameter to be determined by stability arguments. The density-dependent mass m_ν includes two parts: one is the original mass or current mass $m_{\nu 0}$, the other is the interacting part m_1. The exponent of density x, i.e. the quark mass scaling, is treated as a free parameter in this paper.

Denoting the Fermi momentum in the phase space by ν_i ($i = u, d, s, e^{-}$), the particle number densities can then be expressed as

$$n_i = g_i \int \frac{d^3p}{(2\pi)^3} = g_i \frac{\nu_i^3}{2\pi^2}$$

and the corresponding energy density as

$$\varepsilon = \sum_i \frac{g_i}{2\pi^2} \int_0^{\nu_i} \sqrt{p^2 + m_i^2} p^2 dp.$$

The relevant chemical potentials μ_u, μ_d, μ_s, and μ_e satisfy the weak-equilibrium condition (we assume that neutrinos leave the system freely):

$$\mu_u + \mu_e = \mu_d, \quad \mu_d = \mu_s.$$

For the quark flavor i we have

$$\mu_i = \frac{d\varepsilon}{dn_i} = \frac{\partial \varepsilon}{\partial n_i} + \sum_j \frac{\partial \varepsilon}{\partial m_j} \frac{\partial m_j}{\partial n_i} = \sqrt{\nu_i^2 - m_i^2} + \sum_j n_j \frac{\partial m_j}{\partial n_i} f \left(\frac{\nu_i}{m_j} \right),$$

where

$$f(a) = \frac{3}{2a^3} \left[a \sqrt{1 + a^2} - \ln(a + \sqrt{1 + a^2}) \right].$$

We see clearly from Eq. (5) that since the quark masses are density dependent, the derivatives generate an additional term with respect to the free Fermi gas model.

For electrons, we have

$$\mu_e = \sqrt{3\pi^2 n_e/2} + m^2_e.$$

The pressure is then given by

$$P = -\varepsilon + \sum_i \mu_i n_i = -\Omega_0 + \sum_{i u, d, s} n_i n_j \frac{\partial m_j}{\partial n_i} f \left(\frac{\nu_i}{m_j} \right) = -\Omega_0 + n_i \frac{\partial m_i}{\partial n_i} \sum_{j u, d, s} n_j f \left(\frac{\nu_i}{m_j} \right),$$

with Ω_0 being the free-particle contribution:

$$\Omega_0 = -\frac{g_i}{48\pi^2} \left[a \nu_i \sqrt{\nu_i^2 + m_i^2} - \frac{(2\nu_i^2 - 3m_i^2)}{2 \nu_i^2} + 3m_i^2 \arcsinh \left(\frac{\nu_i}{m_i} \right) \right].$$

The baryon number density and the charge density can be given as:

$$n_b = \frac{1}{3} (n_u + n_d + n_s),$$

$$Q_q = \frac{2}{3} n_u - \frac{1}{3} n_d - \frac{1}{3} n_s - n_e.$$
be smaller than c (velocity of light), unphysical region excluded by this condition has been displayed with scattered dots. For the x values chosen here, they have quite different behavior at low density, basically falling into two sequences. At small scalings (x = 1/10, 1/5, 1/3) the pressure increases rather slowly with density; while the curve turns to rapidly increase with density at relatively large x values (x = 1, 2, 3). They cross at ε ~ 800 MeV fm⁻³, then tend to be asymptotically linear relations at higher densities, and a larger x value leads to a stiffer EOS. Meanwhile we check also the stability of such a quark matter, since some EOSs in Fig 3 (x = 1, 2, 3) are rather stiff for small pressures. We present in Fig 4 the total pressure as a function of neutron chemical potential in quark matter for all considered models, and comparison with that of typical nuclear matter (obtained from the Brueckner-Hartree-Fock approach [Li et al. 2000]). We see clearly from the figure that the quark matter tends to be more stable than nuclear matter for all considered models.

The behavior of EOSs would be mirrored at the prediction of mass-radius relations of the corresponding SSs, as is shown in the Fig. 5. For the first sequence, the maximum mass occurs at a low central density (as shown in Table 1), so a higher maximum mass is obtained due to a stiffer EOS, and with the increase of x value, the maximum mass is reduced from 1.78M⊙ at x = 1/10 down to 1.61 M⊙ at x = 1/3; While we observe a slight increase of the maximum mass with x value for the second sequence: from 1.56M⊙ at x = 1 up to 1.62 M⊙ at x = 3. Anyway the resulting maximum mass lies between 1.5M⊙ and 1.8M⊙ for a rather wide range of x value chosen here (0.1 – 3), which may be a pleasing feature of this model: well-controlled. To see the region of stellar parameters allowed by this model, we plot in Fig. 5 also the M(R) curves for lower boundaries defined in Fig. 1 for x = 1/5, 1/3, 1 with grey lines.

The radii, on the other hand, decrease invariably with x value. Employing the empirical formula connecting the maximum rotation frequency with the maximum mass and radius of the static configuration [Gourgoulhon et al. 1999], we get also the maximum rotational angular frequency Ωmax as

$$\Omega_{\text{max}} = \frac{M_{\text{max}}}{2GM_{\odot}} \frac{R_{\text{max}}}{\text{10km}} \frac{1}{\text{rad s}^{-1}}$$

As a result, a larger x value results in a larger maximum spin frequency, SSs with x = 3 can rotate at a frequency of fmax = 2194 Hz. More detailed results can be found in Table 1.

In addition, the surface electric field could be very strong near the bare quark surface of a strange star because of the mass difference of the strange quark and the up (or down) quark, which could play an important role in producing the thermal emission of bare strange stars by the Usov mechanism (Usov 1998; Usov 2001). The strong electric field is also very crucial in forming a possible crust around a strange star, which has been investigated extensively by many authors (for a recent development, see Zdunik et al. 2001). Furthermore, it should be noted that this electric field may have some important implications on pulsar radio emission mechanisms (Xu et al. 2001). Therefore it is very worthwhile to explore how the mass scaling influences the surface electric field of the stars, and possible related astronomical observations in turn may drop a hint on what the proper mass scaling would be.

Adopting a simple Thomas-Fermi model, one gets the Poisson’s equation (Alcock et al. 1986):

$$\frac{d^2 V}{dz^2} = \left\{ \begin{array}{ll} \frac{4\pi}{3} (V^3 - V_q^3) & z \leq 0, \\ \frac{4\pi}{3} V_q^3 & z > 0, \end{array} \right. \quad (12)$$

where z is the height above the quark surface, α is the fine-structure constant, and $V_q^3 / (3\pi^2 \hbar^3 c^5)$ is the quark charge density inside the quark surface. Together with the physical boundary conditions $\{ z \to -\infty : V \to V_q, dV/dz \to 0; \quad z \to +\infty : V \to$
0, \frac{dV}{dz} \to 0\}, \text{ and the continuity of } V \text{ at } z = 0 \text{ requires } V(z = 0) = 3V_q/4, \text{ the solution for } z > 0 \text{ finally leads to}
\begin{equation}
V = \frac{3V_q}{\sqrt{\frac{x}{2}}V_q + 4} \quad (\text{for } z > 0).
\end{equation}

The electron charge density can be calculated as \(V^3/(3\pi^2h^3c^3) \), therefore the number density of the electrons is
\begin{equation}
r_n = \frac{9V_q^3}{\pi^2(\sqrt{\frac{x}{2}}V_q + 4)^3}
\end{equation}
and the electric field above the quark surface is finally
\begin{equation}
E = \sqrt{\frac{2\pi}{3\pi}} \cdot \frac{9V_q^2}{\left(\sqrt{\frac{x}{2}}V_q + z + 4\right)^2}
\end{equation}
which is directed outward.

We see from Fig. 5 (take \(x = 1/3 \) for example) that although the electric field near the surface is about \(10^{18} \text{ V cm}^{-1} \), the outward electric field decreases very rapidly above the quark surface, and at \(z \sim 10^{-8} \text{ cm} \), the field gets down to \(\sim 5 \times 10^{11} \text{ V cm}^{-1} \), which is of the order of the rotation-induced electric field for a typical Goldreich-Julian magnetosphere. To change the mass scaling mainly has two effects: First, it affects a lot the surface electric field, and a small scaling parameter leads to an enhanced electric field. The weakening of electric field would be almost an order of magnitude large (from \(10^{17} \text{ V cm}^{-1} \) to \(10^{18} \text{ V cm}^{-1} \)), which may have some effect on astronomical observations. Second, a larger scaling would slow the decrease of the electric field above the quark surface.

4 CONCLUSIONS

In this paper, we investigate the stability of SQM within a wide scaling range, i.e. from 0.1 to 3. We study also the properties of the SSs made of the matter. The calculation shows that the resulting maximum mass always lies between \(1.5M_\odot \) and \(1.8M_\odot \) for all the mass scalings chosen here. Strange star sequences with a linear scaling would support less gravitational mass, a change (increase or decrease) of the scaling parameter around the linear scaling would result in a higher maximum mass. Radii invariably decrease with the mass scaling. Then the larger the scaling, the faster the star rotates. In addition, the variation of the mass scaling may cause an order of magnitude change of the surface electric field, which may have some effect on astronomical observations.

ACKNOWLEDGMENTS

We would like to thank an anonymous referee for valuable comments and suggestions, and acknowledge Dr. Guang-Xiong Peng for beneficial discussions. This work was supported by the National Basic Research Program of China under grant 2009CB824800, the National Natural Science Foundation of China under grants 10778611, 10833002, 10973002 and the Youth Innovation Foundation of Fujian Province under grant 2009J05013.

REFERENCES

Strange stars with different quark mass scalings

Lugones, G. & Horvath,J. E. 2003, Int. J. Mod. Phys. D, 12, 495
Peng, G. X. 2009, private communication