Neutrino Mass Models

- Why BSM?
- Neutrino mass models roadmap
- Survey of approaches
- TBM, A_{4}, CSD
- Family symmetry and GUTs
- Sum rules and predictions

Great interest in neutrino theory, e.g. Melbourne Participants:

Kev Abazajian (Maryland)	Steve King (Southhampton)
Carl Albright (Fermilab)	Archil Kobakhidze (Melbourne)
Evgeny Akhmedov (Max Planck, Heidelberg)	Sandy Law (Melbourne)
Matthew Baring (Rice)	Manfred Lindner (Max Planck, Heidelberg)
Pasquale Di Bari (Padova)	Ernest Ma (UC Riverside)
Nicole Bell (Melbourne)	Kristian McDonald (TRIUMF)
Mu-Chun Chen (UC Irvine)	Bruce McKellar (Melbourne)
Vincenzo Cirigliano (LANL)	Hitoshi Murayama (UC Berkeley)
Roland Crocker (Monash)	Sandip Pakvasa (Hawaii)
Basudeb Dasgupta (Tata Institute)	Sergio Palomares-Ruiz (Durham)
Amol Dighe (Tata Institute)	Stephen Parke (Fermilab)
Andreu Esteban-Pretel (Valencia)	Sergio Pastor (Valencia)
Ferruccio Feruglio (Padua/INFN)	Nadine Pesor (Melbourne)
Robert Foot (Melbourne)	Serguey Petcov (SISSA/INFN, Trieste)
George Fuller (UC San Diego)	Michael Pluemacher (Max Planck, Munich)
Alex Friedland (LANL)	Tatsu Takeuchi (Virginia Tech.)
Julia Garayoa Roca (Valencia)	Ricard Tomas (Hamburg)
Vladimir N. Gavrin (Moscow, INR)	Timur Rashba (Max Planck, Munich)
Damien George (Melbourne)	Ray Sawyer (UC Santa Barbara)
Andre de Gouvea (Northwestern)	Alexei Smirnov (ICTP, Trieste)
Tom Griffin (Melbourne)	Gerard Stephenson (UNM)
Gary Hill (Madison)	Alexander Studenikin (Moscow State University)
Martin Hirsch (Valencia)	Jayne Thompson (Melbourne)
Thomas Jacques (Melbourne)	Shoichi Uchinami (Tokyo Metropolitan U.)
Girish Joshi (Melbourne)	Raoul Viollier (Cape Town)
Sin Kyu Kang (Seoul National University of Technology)	Ray Volkas (Melbourne)
Boris Kayser (Fermilab)	Renata Zukanovich-Funchal (São Paulo)

Why Beyond Standard Model?

1. There are no right-handed neutrinos V_{R}
2. There are only Higgs doublets of $\operatorname{SU}(2)_{\mathrm{L}}$
3. There are only renormalizable terms

In the Standard Model these conditions all apply so neutrinos are massless, with v_{e}, v_{μ}, v_{τ} distinguished by separate lepton numbers $\mathrm{L}_{\mathrm{e}}, \mathrm{L}_{\mu}$, L_{τ}

Neutrinos and anti-neutrinos are distinguished by the total conserved lepton number $L=L_{e}+L_{\mu}+L_{\tau}$

To generate neutrino mass we must relax 1 and/or 2 and/or 3
Staying within the SM is not an option - but what direction?

- Neutrino mass models roadmap

LSND True or False?

MiniBoone does not support LSND result

In this talk we assume that LSND is false

Dirac or Majorana?

Majorana masses

Conserves L Violates L_{e}, L_{μ}, L_{τ} Neutrino \neq antineutrino
Dirac mass

$1^{\text {st }}$ Possibility: Dirac

Recall origin of electron mass in SM with $L=\binom{v_{e}}{e^{-}}_{L}, \quad e_{R}^{-}, \quad H=\binom{H^{+}}{H^{0}}$

$$
\lambda_{e} \bar{L} H e_{R}^{-}=\lambda_{e}\left\langle H^{0}\right\rangle \bar{e}_{L}^{-} e_{R}^{-}
$$

Yukawa coupling λ_{e} must be small since $\left\langle\mathrm{H}^{0}\right\rangle=175 \mathrm{GeV}$

$$
m_{e}=\lambda_{e}\left\langle H^{0}\right\rangle \approx 0.5 \mathrm{MeV} \Leftrightarrow \lambda_{e} \approx 3.10^{-6}
$$

Introduce right-handed neutrino v_{eR} with zero Majorana mass

$$
\lambda_{v} \bar{L} H^{c} v_{e R}=\lambda_{v}\left\langle H^{0}\right\rangle \bar{v}_{e L} v_{e R}
$$

then Yukawa coupling generates a Dirac neutrino mass

$$
m_{L R}^{v}=\lambda_{v}\left\langle H^{0}\right\rangle \approx 0.2 \mathrm{eV} \Leftrightarrow \lambda_{v} \approx 10^{-12} \quad \text { Why so small? }
$$

- Flat extra dimensions with RH neutrinos in the bulk

Dienes, Dudas, Gherghetta; Arkhani-Hamed, Dimopoulos, Dvali, March-Russell

For one extra dimension y the v_{R} wavefunction spreads out over the extra dimension, leading to a volume suppressed Yukawa coupling at $\mathrm{y}=0$
v_{R} in bulk

$$
\begin{aligned}
& \rightarrow m_{L R}^{v}=\frac{\lambda\left\langle H^{0}\right\rangle}{\sqrt{V}}=\lambda\left\langle H^{0}\right\rangle \frac{M_{\text {string }}}{M_{\text {Planck }}} \\
& \text { e.g. } \frac{M_{\text {string }}}{M_{\text {Planck }}}=\frac{10^{7}}{10^{19}}=10^{-12}
\end{aligned}
$$

- Warped extra dimensions with SM in the bulk

$2^{\text {nd }}$ Possibility: Majorana

Renormalisable
$\Delta \mathrm{L}=2$ operator $\lambda_{v} L L \Delta$ where Δ is light Higgs triplet with VEV < 8 GeV from ρ parameter
$\begin{array}{r}\text { Non-renormalisable } \\ \Delta \mathrm{L}=2 \text { operator }\end{array} \frac{\lambda_{v}}{M} L L H H=\frac{\lambda_{v}}{M}\left\langle H^{0}\right\rangle^{2} \bar{v}_{e L} v_{e L}^{c}$ Weinberg
This is nice because it gives naturally small Majorana neutrino masses $m_{L L} \sim<H^{0}>^{2} / M$ where M is some high energy scale

The high mass scale can be associated with some heavy particle of mass M being exchanged (can be singlet or triplet)

-Loop models
-RPV SUSY
-See-saw mechanisms

- Loop models

Introduce Higgs singlets and triplets with couplings to leptons

$$
-\mathcal{L}^{y u k}=f_{i j} H^{++} l_{i} l_{j}+g_{i j} H^{+} l_{i} \nu_{j}+h_{i j} H^{0} \nu_{i} \nu_{j}
$$

- RPV SUSY

Another way to generate Majorana masses is via SUSY
Scalar partners of lepton doublets (slepton doublets) have same quantum numbers as Higgs doublets

If R-parity is violated then sneutrinos may get (small)
VEVs inducing a mixing between neutrinos and neutralinos χ

$$
\begin{aligned}
& m_{L L}^{v} \approx \frac{\langle\tilde{v}\rangle^{2}}{M_{\chi}} \approx \frac{M e V^{2}}{T e V} \approx e V \\
& \text { Also need loops } \\
& \text { Drees,Dreiner, Diaz, Hirsch, Porod, } \\
& \text { Romao,Valle,... }
\end{aligned}
$$

See Senjanovic talk for type III -Type I and II see-saw mechanism

-Type II upgrade of type I models
 Antusch, SFK

Unit matrix type II contribution from an SO(3) family symmetry

Hierarchical type I contribution controls the neutrino mixings and mass splittinas

Type II contribution governs the neutrino mass scale and renders neutrinoless double beta decay observable

Very precise Tri-bimaximal mixing (TBM) ?

$$
\begin{gathered}
\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
\theta_{12}=35^{\circ}, \quad\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right) \\
\text { Harris } \\
\theta_{23}=45^{\circ}, \quad \theta_{13}=0^{\circ}
\end{gathered}
$$

c.f. data

$$
\theta_{12}=33.8^{\circ} \pm 1.4^{\circ}, \theta_{23}=45^{\circ} \pm 3^{\circ}, \theta_{13}<12^{\circ}
$$

- Current data is consistent with TBM
- But no convincing reason for exact TBM - expect deviations

It is useful to consider the following parametrization of the PMNS mixing matrix in terms of deviations from TBM

$$
\begin{gathered}
s_{13}=\frac{r}{\sqrt{2}}, \quad s_{12}=\frac{1}{\sqrt{3}}(1+s), \quad s_{23}=\frac{1}{\sqrt{2}}(1+a) \\
0<r<0.22,-0.11<s<0.04, \quad-0.12<a<0.13 . \begin{array}{l}
\text { SFK; } \\
\text { see also } \\
\text { Pakvasa, } \\
\text { Rodejohann, } \\
\begin{array}{l}
\text { Wyler; } \\
\text { Bjorken, }
\end{array} \\
\mathrm{r}=\text { reactor } \\
\text { Harrison, }
\end{array} \\
U \approx\left(\begin{array}{ccc}
\text { Scott, } \\
\text { Parke, }, \ldots
\end{array}\right. \\
\left.\begin{array}{ccc}
\sqrt{\frac{2}{3}}\left(1-\frac{1}{2} s\right) & a=\text { atmospheric } \\
-\frac{1}{\sqrt{6}}\left(1+s-a+r e^{i \delta}\right) & \frac{1}{\sqrt{3}}\left(1-\frac{1}{2} s-a-\frac{1}{2} r e^{i \delta}\right) & \frac{1}{\sqrt{2}}(1+a) \\
\frac{1}{\sqrt{6}}\left(1+s+a-r e^{i \delta}\right) & -\frac{1}{\sqrt{3}}\left(1-\frac{1}{2} s+a+\frac{1}{2} r e^{i \delta}\right) & \frac{1}{\sqrt{2}}(1-a)
\end{array}\right)
\end{gathered}
$$

For a list of oscillation formulae in terms of r, s, a see SFK arXiv:0710.0530

Perturbing the TBM neutrino mass matrix

Inverted hierarchy

Normal hierarchy

Inverted hierarchy

TBM mass matrices in three different bases

1. Diagonal charged lepton basis $U_{M N S}=V^{v_{L} \dagger}$
$m_{L R}^{E}=\left(\begin{array}{ccc}m_{e} & 0 & 0 \\ 0 & m_{\mu} & 0 \\ 0 & 0 & m_{\tau}\end{array}\right) \quad m_{L L}=\frac{m_{3}}{2}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)+\frac{m_{2}}{3}\left(\begin{array}{ccc}1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1\end{array}\right)+\frac{m_{1}}{6}\left(\begin{array}{ccc}4 & -2 & 2 \\ -2 & 1 & -1 \\ 2 & -1 & 1\end{array}\right)$
2. Cabibbo-Wolfenstein basis $\quad U_{M N S}=V^{E_{L}} V^{V_{L} \dagger} \omega=e^{2 \pi i / 3}$

$$
m_{L R}^{E}=\left(\begin{array}{ccc}
m_{e} & m_{\mu} & m_{\tau} \\
m_{e} & \omega^{2} m_{\mu} & \omega m_{\tau} \\
m_{e} & \omega m_{\mu} & \omega^{2} m_{\tau}
\end{array}\right), m_{L L}=\left(\begin{array}{ccc}
m_{2} & 0 & 0 \\
0 & m_{2} & \Delta \\
0 & \Delta & m_{2}
\end{array}\right) \rightarrow V^{E_{L}}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega^{2} & \omega \\
1 & \omega & \omega^{2}
\end{array}\right), V^{v_{L} \uparrow}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{-i}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}}
\end{array}\right)
$$

3.Diagonal neutrino basis $U_{M N S}=V^{E_{L}}$

Low energy physics doesn't care about the choice of basis, but the high scale theory does

\square Family symmetry

The basic idea of family symmetry is to assign each family a new type of colour charge

- The magic symmetry A_{4}

- A_{4} is symmetry group of the tetrahedron (Plato's "'fire") reproduces the TBM form of the charged lepton mass matrix in the Cabibbo-Wolfenstein basis 2 Ma , Rajasakaran
-TBM form of the neutrino mass matrix then requires a delicate Higgs vacuum alignment Ma; Altarelli,Feruglio
- A_{4} may also be used to give the TBM neutrino mass matrix in the Flavour basis 1 Altarelli,Feruglio
- A_{4} may arise from 6D orbifolding Altarelli,Feruglio,Lin

Deriving TBM from see-saw mechanism sfk

$$
\begin{aligned}
& \text { Diagonal RH nu basis } \\
& M_{\mathrm{RR}}=\left(\begin{array}{ccc}
X & 0 & 0 \\
0 & Y & 0 \\
0 & 0 & Z
\end{array}\right) \quad Y_{\mathrm{LR}}^{\nu}=\left(\begin{array}{ll}
A & B
\end{array}\right)
\end{aligned}
$$

See-saw I $\Rightarrow m_{L L}^{v}=\frac{A A^{T}}{X}+\frac{B B^{T}}{Y}+\frac{C C^{T}}{Z^{2}}$
Sequential dominance \longmapsto Dominant Subdominant Decoupled

$$
\left.\begin{array}{l}
\left|A_{1}\right|=0, \\
\left|A_{2}\right|=\left|A_{3}\right|, \\
\left|B_{1}\right|=\left|B_{2}\right|=\left|B_{3}\right|, \\
A^{\dagger} B=0
\end{array}\right\} \quad \begin{gathered}
\mathrm{m}_{2} \\
m_{L L}=\frac{m_{3}}{2}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)+\frac{m_{2}}{3}\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right)
\end{gathered}
$$

Constrained SD

TBM mass matrix (\sim 2RHN)

This requires a non-Abelian family symmetry

Need

$$
Y_{L R}^{v}=\left(\begin{array}{lll}
0 & B_{1} & - \\
A_{2} & B_{2} & - \\
A_{3} & B_{3} & -
\end{array}\right) \quad \text { with } \quad \begin{aligned}
& \left|A_{1}\right|=0, \\
& \left|A_{2}\right|=\left|A_{3}\right|, \\
& \left|B_{1}\right|=\left|B_{2}\right|=\left|B_{3}\right|, \\
& A^{\dagger} B=0
\end{aligned}
$$

$2 \leftrightarrow 3$ symmetry (from maximal atmospheric mixing)
$1 \leftrightarrow 2 \leftrightarrow 3$ symmetry (from tri-maximal solar mixing)
Several examples of suitable non-Abelian Family Symmetries:
\(\left.\begin{array}{ccc}SFK, Ross; Velasco-Sevilla; Varzelias \& S U(3) \& \Delta_{27}

SFK, Malinsky \& S O(3) \& A_{4}\end{array}\right\}\)| Discrete subgroups |
| :--- |
| preferred by vacuum |
| alignment |

Family \times GUT symmetry

e.g. Chen and Mahanthappa T' $\times \operatorname{SU}(5)$

Altarelli, Feruglio, Hagedorn $\mathrm{A}_{4} \times \mathrm{SU}(5)$ (in 5d)
SFK, Malinsky $\mathrm{A}_{4} \times$ Pati-Salam
e.g. Chen and Mahanthappa T' $\times \operatorname{SU}(5)$
Altarelli, Feruglio, Hagedorn $A_{4} \times S U(5)$
Varzielas, SFK, Ross $\Delta_{27} \times$ Pati-Salam/SO(10)

)

 ?
 ?

GQUT

Gamily

$$
O(3)_{L} \times O(3)_{R}
$$

General Strategy

Choose a GUT and family symmetry and write down the reps Asssign quarks, leptons, Higgs to reps $\quad L_{i}=\binom{v_{i}}{E_{i}^{-}}, \quad E_{j}^{c}, \quad H=\binom{H^{+}}{H^{0}}$
Renormalizable Yukawas requires extended Higgs $\mathrm{H} \rightarrow \mathrm{H}^{\mathrm{ij}}$

$$
\lambda_{i j} H L_{i} E_{j}^{c} \rightarrow \lambda H^{i j} L_{i} E_{j}^{c} \quad \text { Machado,Pleitez }
$$

Alternatively promote Yukawas to non-renormalizable terms involving the usual Higgs H plus SM singlet flavon fields ϕ

$$
\begin{aligned}
\lambda_{i j} H L_{i} E_{j}^{c} \rightarrow \lambda \frac{\phi^{i j}}{M} H L_{i} E_{j}^{c} & \text { or }
\end{aligned} \lambda_{i j} H L_{i} E_{j}^{c} \rightarrow \lambda \frac{\phi^{i} \phi^{j}}{M^{2}} H L_{i} E_{j}^{c}
$$

GUT relations

See-saw \Rightarrow
$m_{v}=v_{E W}{ }^{2} Y_{v} M_{R}{ }^{-1} Y_{v}{ }^{\top}$

Can this lead to Quark-Lepton Complementarity (QLC)?

$$
\theta_{12}+\theta_{\mathrm{C}}=45^{0} \quad \text { Petcov,Smirnov; Raidal;Ohlsson,Seidl }
$$

n Sum Rules

Bjorken; Ferrandis, Pakvasa; SFK
$\begin{aligned} & \text { Cabibbo-like } \\ & U_{M N S}=V^{E_{L}} V^{v_{L} \dagger}\end{aligned} \rightarrow \theta_{13} \approx \frac{\theta_{12}^{e}}{\sqrt{2}} \approx \frac{\theta_{C}}{3 \sqrt{2}} \approx 3^{\circ}$,
Bimaximal or
Tri-bimaximal
Bimaximal or
Tri-bimaximal
$\longrightarrow \theta_{12}=45^{\circ}(35)^{\circ}+\frac{\theta_{C}}{3 \sqrt{2}} \cos \delta$

$$
\theta_{12}^{o}=45^{o}(35)^{o}+\theta_{13}^{o} \cos \delta \quad \begin{gathered}
\text { SFK; Antusch,SFK; Masina }
\end{gathered}
$$

Bimaximal sum rule with 45° requires $\theta_{13} \approx \theta_{C}$ and $\delta \approx \pi$ \rightarrow QLC is only achieved for a special phase and large θ_{13}

Antusch,SFK,Mohapatra What about tri-bimaximal sum rule with 35° ?

Tri-bimaximal sum rule $\quad \theta_{12} \approx 35.3^{\circ}+\theta_{13} \cos \delta$

Bands show 3σ error for an optimized neutrino factory determination of $\theta_{13} \cos \delta$
$\} \underset{\text { (current value) }}{\theta_{12}=33.8^{\circ} \pm 1.0^{\circ}}$
Tri-bimaximal sum rule works incredibly well !!

RGE corrections to TBM sum rule

- Alternative Ideas

-Accidental family symmetry from messenger dominance Ferretti, SFK, Romanino; Barr - SU(8) GUTs Barr
-Mass matrices from shift symmetry: $v_{R} \rightarrow v_{R}+\eta \theta$ Friedberg,Lee;
-Extremization of mass matrix Jarlskog invariants Harrison,Scott
-Theories of the Koide mass formula Koide,...
-Dirac screening in the double see-saw Lindner,Smirnov,Schmidt
-Low energy see-saw models with gauged B-L SFK,Yanagida
-Anarchy/Landscape (large θ_{13} only) Hall,Murayama,Weiner
-RH Neutrino masses in string theory Antusch,lbanez; Nilles,Langacker
-Invariant classification of see-saw models
SFK

Conclusion

- Neutrino mass and mixing requires new physics BSM
- Many roads for model building, but answers to key experimental questions will provide the signposts
- One key question is how accurately is TBM realised?
- Goal of next generation of oscillation experiments is to show that the deviations from TBM r,s,a are non-zero and measure them and δ
- If TBM is accurately realised this may imply a new symmetry of nature: family symmetry
- GUTs \times family symmetry with see-saw + CSD is very attractive framework for TBM \rightarrow sum rule prediction
- Few realistic models, complicated vacuum alignment
- Status quo is not an option - neutrino physics demands a theory of flavour, and may provide further clues

