Sterile neutrinos and the rapid formation of supermassive black holes

M.C. Richter, G.B. Tupper and R.D. Viollier

Centre for Theoretical Physics and Astrophysics, Department of Physics, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
E-mail: raoul.viollier@uct.ac.za

Abstract
Massive sterile neutrinos that are embedded in a renormalizable seesaw-like extension of the standard model of particle physics are a most attractive dark matter candidate. Indeed, lowering the seesaw mass-scale from the grand unification scale to well below the weak interaction symmetry breaking scale, the lowest-mass right-handed neutrino may acquire a mass around 10 keV/c^2 and thus become a quasi-stable dark matter particle due to its small Yukawa coupling. Moreover, this low mass-scale seesaw mechanism may explain the observed oscillation properties of the left-handed active neutrinos as well as the baryon asymmetry through ordinary mixing. Here we show that self-gravitating degenerate balls, made of such sterile neutrinos, can resolve the longstanding mystery of the formation of supermassive black holes at redshift larger than six, less than a Gyr after the big bang.

Keywords: cosmology, quasars, black holes, sterile neutrinos, dark matter


1Author to whom any correspondence should be addressed