

SCALAR MESONS IN QCD

Stephan Narison CNRS - Montpellier

LIEDMADO7 Antononomize (10,15th Sontombor 2007) n 1/5

Light Hadrons Spectroscopy

Light Quarks: u,d,s: $m_q \le \Lambda_{QCD} \approx 350$ MeV; $Q_u = 2/3; Q_d = Q_s = -1/3$

Light Hadrons Spectroscopy

↓ Light Quarks:
 u,d,s: $m_q \le \Lambda_{QCD} \approx 350$ MeV;
 $Q_u = 2/3; Q_d = Q_s = -1/3$ ↓ Light Baryons
 proton= uud; neutron= udd,...

Light Hadrons Spectroscopy

Light Quarks: u,d,s : $m_q \leq \Lambda_{OCD} \approx 350$ MeV; $Q_{\mu} = 2/3; Q_d = Q_s = -1/3$ Light Baryons proton= uud; neutron= udd,... C Light Ordinary Mesons $\pi^{-} \equiv \bar{u}d : J^{PC} = 0^{-+}; \ \rho^{-} \equiv \bar{u}d : J^{PC} = 1^{--};$ $A_1 \equiv \bar{u}d : J^{PC} = 1^{++}$ Well understood in QCD : associated resp. to the pseudoscalar, vector and axial-vector currents.

Long standing puzzle
 Difficult to identify experimentally : too wide (σ) or near the *K̄K* threshold (*a*₀).

► Long standing puzzle
Difficult to identify experimentally : too wide (σ) or near the *K̄K* threshold (*a*₀).
Can be produced from: φ, *J*/ψ, Υ, *B* and *D* - decays γγ, ππ and πN scatterings

Long standing puzzle
 Difficult to identify experimentally : too wide (σ) or near the *K̄K* threshold (*a*₀).

• Can be produced from: ϕ , J/ψ , Υ , *B* and *D* - decays $\gamma\gamma$, $\pi\pi$ and πN scatterings

- Different interpretations
- ordinary $\bar{q}q$
- four-quark states
- gluon bound states for the I=0

$\bar{q}q$ and gluonium interpretations

► I=1 scalar : $a_0(980)$, $\kappa(800)$ • Can be explained as $\bar{q}q$ states : associated to the divergence of the QCD vector current : $J_S = (m_i - m_j)\bar{\psi}_i(i)\bar{\psi}_j$

$\bar{q}q$ and gluonium interpretations

- ► I=1 scalar : $a_0(980)$, $\kappa(800)$ • Can be explained as $\bar{q}q$ states : associated to the divergence of the QCD vector current : $J_S = (m_i - m_j)\bar{\psi}_i(i)\bar{\psi}_j$
- ► I=0 scalar : $\sigma(800)$, $f_0(980)$ • Can be explained as 1/2 $\bar{q}q$ and 1/2 gluonium states : associated to Trace of the QCD energy-momentum tensor current : $\Theta^{\mu}_{\mu} = \sum m_j \bar{\psi}_j \bar{\psi}_j + (1/4)\beta(\alpha_s)G^2$.

Introduced by Shifman-Vainshtein-Zakharov

- Introduced by Shifman-Vainshtein-Zakharov
- Improved dispersion relation : duality between measured and QCD observables

- Introduced by Shifman-Vainshtein-Zakharov
- Improved dispersion relation : duality between measured and QCD observables
- SN-Veneziano 88, Bramon-SN 89

- Introduced by Shifman-Vainshtein-Zakharov
- Improved dispersion relation : duality between measured and QCD observables
- SN-Veneziano 88, Bramon-SN 89
- **SN 84, 96, 2005**

- Introduced by Shifman-Vainshtein-Zakharov
- Improved dispersion relation : duality between measured and QCD observables
- SN-Veneziano 88, Bramon-SN 89
- **SN 84, 96, 2005**
- Dosch-SN 2000

- Introduced by Shifman-Vainshtein-Zakharov
- Improved dispersion relation : duality between measured and QCD observables
- SN-Veneziano 88, Bramon-SN 89
- **SN 84, 96, 2005**
- Dosch-SN 2000
- Minkowski-Mennessier-SN-Ochs 2007