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Abstract

We have shown how to express a tensor permutation matrix p⊗n as a linear
combination of the tensor products of p×p-Gell-Mann matrices. We have given
the expression of a tensor permutation matrix 2⊗ 2⊗ 2 as a linear combination
of the tensor products of the Pauli matrices.

Introduction

The expression of the tensor commutation matrix 2⊗ 2 as a linear combination
of the tensor products of the Pauli matrices

U2⊗2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =
1
2
I2 ⊗ I2 +

1
2

3∑
i=1

σi ⊗ σi

with I2 the 2 × 2 unit matrix, [1], [2] are frequently found in quantum theory.
The tensor commutation matrix 3 ⊗ 3 is expressed as a linear combination of
the tensor products of the 3× 3-Gell-Mann matrices [3]

U3⊗3 =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


=

1
3
I3 ⊗ I3 +

1
2

8∑
i=1

λi ⊗ λi

and as generalization of these two formulae the tensor commutation matrix p⊗p
is expressed as a linear combination of the tensor products of the p×p-Gell-Mann
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matrices[4]

Up⊗p =
1
p
Ip ⊗ Ip +

1
2

p2−1∑
a=1

Λa ⊗ Λa (1)

where Ip the p× p-unit matrix.
It is natural to think to more general formulae in the direction from tensor

commutation matrix to tensor permutation matrix. However, the aim of this
paper is not to construct a more general formula but to show only how to express
a tensor permutation matrix p⊗n as a linear combination of the tensor products
of the p×p-Gell-Mann matrices, with for p = 2 the expression is in terms of the
Pauli matrices.

In the firt four sections we will construct the tools which we will need for
the examples in the last section. The main idea is to decompose the tensor
permutation matrix p⊗n as a product of some tensor transposition matrices.

1 Tensor product of matrices

Theorem 1 Consider (Ai)1≤i≤n×m a basis of Mn×m(C), (Bj)1≤j≤p×r a basis
of Mp×r(C). Then, (Ai ⊗Bj)1≤i≤n×m,1≤j≤p×r is a basis of Mnp×mr(C).

Proposition 2 Consider (Ai)1≤i≤n a set of elements of Mp×r(C), (Bi)1≤i≤n
a set of elements of Ml×m(C), A ∈Mp×r(C) and B ∈Ml×m(C). If

A⊗B =
n∑
i=1

Ai ⊗Bi (1.2)

then, for any matrix K,

A⊗K ⊗B =
n∑
i=1

Ai ⊗K ⊗Bi

2 Tensor permutation matrices

Definition 3 For p, q ∈ N, p ≥ 2, q ≥ 2, we call tensor commutation matrix
p⊗ q the permutation matrix Up⊗q ∈ Mpq×pq (C) formed by 0 and 1, verifying
the property

Up⊗q.(a⊗ b) = b⊗ a
for all a ∈Mp×1 (C), b ∈Mq×1 (C).
More generally, for k ∈ N, k > 2 and for σ permutation on {1, 2, . . . , k}, we
call σ-tensor permutation matrix n1 ⊗ n2 ⊗ . . . ⊗ nk the permutation matrix
Un1⊗n2⊗...⊗nk

(σ) ∈ Mn1n2...nk×n1n2...nk
(C) formed by 0 and 1, verifying the

property

Un1⊗n2⊗...⊗nk
(σ) · (a1 ⊗ a2 ⊗ . . .⊗ ak) = aσ(1) ⊗ aσ(2) ⊗ . . .⊗ aσ(k)

for all ai ∈Mni×1 (C), (i ∈ {1, 2, . . . , k}).
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Definition 4 For k ∈ N, k > 2 and for σ permutation on {1, 2, . . . , k}, we call
σ-tensor transposition matrix n1⊗n2⊗ . . .⊗nk a σ-tensor permutation matrix
n1 ⊗ n2 ⊗ . . .⊗ nk with σ is a transposition.

Consider the σ-tensor transposition matrix n1⊗n2⊗. . .⊗nk, Un1⊗n2⊗...⊗nk
(σ)

with σ the transposition (i j).

Un1⊗n2⊗...⊗nk
(σ) · (a1 ⊗ . . .⊗ ai ⊗ ai+1 ⊗ . . .⊗ aj ⊗ aj+1 ⊗ . . .⊗ ak)

= a1 ⊗ . . .⊗ ai−1 ⊗ aj ⊗ ai+1 ⊗ . . .⊗ aj−1 ⊗ ai ⊗ aj+1 ⊗ . . .⊗ ak

for any al ∈Mnl×1 (C).
If (Bli)1≤li≤njni

,
(
Blj
)
1≤lj≤ninj

are respectively bases ofMnj×ni (C) andMni×nj (C),
then the tensor commutation matrix Uni⊗nj

can be decomposed as a linear com-
bination of the basis

(
Bli ⊗Blj

)
1≤li≤njni,1≤lj≤ninj

ofMninj×ninj (C). We want
to prove that Un1⊗n2⊗...⊗nk

(σ) is a linear combination of(
In1n2...ni−1 ⊗Bli ⊗ Ini+1ni+2...nj−1 ⊗Blj ⊗ Inj+1nj+2...nk

)
1≤li≤njni,1≤lj≤ninj

.
For doing so, it suffices to prove the following theorem by using the proposition
2.

Theorem 5 Suppose σ =
(

1 2 3
3 2 1

)
=
(

1 3
)

permutation on {1, 2, 3},

(Bi1)1≤i1≤N3N1
, (Bi3)1≤i3≤N1N3

bases respectively ofMN3×N1 (C) andMN1×N3 (C).

If UN1⊗N3 =
N1N3∑
i1=1

N1N3∑
i3=1

αi1i3Bi1 ⊗Bi3 , αi1i3 ∈ C, then

UN1⊗N2⊗N3 (σ) =
N1N3∑
i1=1

N1N3∑
i3=1

αi1i3Bi1 ⊗ IN2 ⊗Bi3 .

3 Decomposition of a tensor permutation ma-
trix

Notation 6 Let σ ∈ Sn, that is σ a permutation on {1, 2, . . . , n}, p ∈ N, p ≥ 2,
we denote the tensor permutation matrix Up⊗ p⊗ . . .⊗ p︸ ︷︷ ︸

n−times

(σ) by Up⊗n (σ),[5].

We use the following lemma for demonstrating the theorem below.

Lemma 7 Let σ ∈ Sn, whose cycle is

Cσ = (i1 i2 i3 . . . in−1 in)

then,
Cσ = (i1 i2 i3 . . . in−1) (in−1 in)
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Theorem 8 For n ∈ N∗, n > 1, σ ∈ Sn whose cycle is

Cσ = (i1 i2 i3 . . . ik−1 ik)

with k ∈ N∗, k > 2. Then

Up⊗n (σ) = Up⊗n ((i1 i2 . . . ik−1)) · Up⊗n ((ik−1 ik))

or
Up⊗n (σ) = Up⊗n ((i1 i2)) · Up⊗n ((i2 i3)) · . . . · Up⊗n ((ik−1 ik))

with p ∈ N∗, p > 2.

So, a tensor permutation matrix can be expressed as a product of tensor trans-
position matrices.

Corollary 9 For n ∈ N∗, n > 2, σ ∈ Sn whose cycle is

Cσ = (i1 i2 i3 . . . in−1 n)

Then,

Up⊗n (σ) =
[
Up⊗(n−1) ((i1 i2 . . . in−2 in−1))⊗ Ip

]
· Up⊗n ((in−1 n))

4 n× n-Gell-Mann matrices

The n×n-Gell-Mann matrices are hermitian, traceless matrices Λ1,Λ2,. . . ,Λn2−1

satisfying the commutation relations (Cf. for example [6], [7])

[Λa,Λb] = 2i
n2−1∑
a=1

fabcΛc (4.1)

where fabc are the structure constants which are reals and totally antisymmetric,
and

Tr (ΛaΛb) = 2δab

where δab the Kronecker symbol.
For n = 2, the 2× 2-Gell-Mann matrices are the usual Pauli matrices.

They satisfy also the anticommutation relation (Cf. for example[6], [7])

{Λa,Λb} =
4
n
δabIn + 2

n2−1∑
c=1

dabcΛc (4.2)

where In denotes the n-dimensional unit matrix and the constants dabc are reals
and totally symmetric in the three indices, and by using the relations (4.1) and
(4.2), we have

ΛaΛb =
2
n
δab +

n2−1∑
c=1

dabcΛc + i
n2−1∑
c=1

fabcΛc (4.3)
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The structure constants satisfy the relation (Cf. for example[6])

n2−1∑
e=1

fabefcde =
2
n

(δacδbd − δadδbc) +
n2−1∑
e=1

daceddbe −
n2−1∑
e=1

dadedbce (4.4)

5 Examples

Now, we have some theorems and relations on the generalized Gell-Mann ma-
trices which we need for expressing a tensor permutation matrix in terms of the
generalized Gell-Mann matrices. In this section, we treat some examples.

5.1 Un⊗3(σ)

σ = (1 2 3)
By employing the Lemma 7

σ = (1 2)(2 3)

and by using the Theorem 8

Un⊗3 ((1 2 3)) = Un⊗3 ((1 2)) · Un⊗3 ((2 3)) (5.1)

However, using (1)

Un⊗3 ((1 2)) =
1
n
In ⊗ In ⊗ In +

1
2

n2−1∑
a=1

Λa ⊗ Λa ⊗ In

and

Un⊗3 ((2 3)) =
1
n
In ⊗ In ⊗ In +

1
2

n2−1∑
a=1

In ⊗ Λa ⊗ Λa

So, by using (5.1) we have

Un⊗3 ((1 2 3)) =
1
n2
In ⊗ In ⊗ In +

1
2n

n2−1∑
a=1

In ⊗ Λa ⊗ Λa

+
1

2n

n2−1∑
a=1

Λa ⊗ Λa ⊗ In +
1
4

n2−1∑
a=1

n2−1∑
b=1

Λa ⊗ ΛaΛb ⊗ Λb
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Hence, employing the relation (4.3)

Un⊗3 ((1 2 3)) =
1
n2
In ⊗ In ⊗ In +

1
2n

n2−1∑
a=1

In ⊗ Λa ⊗ Λa

+
1

2n

n2−1∑
a=1

Λa ⊗ Λa ⊗ In +
1

2n

n2−1∑
a=1

Λa ⊗ In ⊗ Λa

− i

4

n2−1∑
a=1

n2−1∑
b=1

n2−1∑
c=1

fabcΛa ⊗ Λb ⊗ Λc +
1
4

n2−1∑
a=1

n2−1∑
b=1

n2−1∑
c=1

dabcΛa ⊗ Λb ⊗ Λc

(5.2)

5.2 U2⊗3(σ), σ ∈ S3

Now we give a formula giving U2⊗3(σ), naturally in terms of the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
Using the relation (Cf. for example [8])

σlσk = δlkI2 + i

3∑
m=1

εlkmσm

where εijk is totally antisymmetric in the three indices, which is equal 1 if
(i j k) = (1 2 3), we have

U2⊗3(1 2 3) =
1
4
I2 ⊗ I2 ⊗ I2 +

1
4

3∑
l=1

I2 ⊗ σl ⊗ σl +
1
4

3∑
l=1

σl ⊗ I2 ⊗ σl

+
1
4

3∑
l=1

σl ⊗ σl ⊗ I2 −
i

4

3∑
i=1

3∑
j=1

3∑
k=1

εijkσi ⊗ σj ⊗ σk

Conclusion

Based on the fact that a tensor permutation matrix is a product of tensor
transposition matrices and on the Theorem 5, with the help of the expression of
a tensor commutation matrix in terms of the generalized Gell-Mann matrices,
we can express a tensor permutation matrix as linear combination of the tensor
products of the generalized Gell-Mann matrices.

We have no intention for searching a general formula. However, we have
shown that any tensor permutation matrix can be expressed in terms of the
generalized Gell-Mann matrices and then the expression can be simplified by
using the relations between these Matrices.
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