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Various authors developed perturbations methods using mathematical tools to approach energy level of atoms with well known 

results in quantum mechanics. We shall develop a method with chaos structure to evaluate perturbations for particles system 

like atoms in order to contribute extending tools for calculating their energy levels. Concept of model with test particle within 

central potential )r(V
r

 depending upon radial variable r is used. We establish properties of the approach and we make 

applications to light atoms. Results from applications of the method are discussed. Perturbation techniques using development 

of wave function ψ  in terms of perturbations and variation method are considered for comparison.  

 

1. INTRODUCTION  

Rigorous analytical resolution of Schrödinger equation is complicated when dimension of system becomes greater 

than 3. Approximations techniques are used to contribute alleviate this problem. We develop a method using test 

electron and chaos structure concept [1] to shape perturbations which affect energy levels of light atoms. For this 

purpose, we use wave function  )r(m,,n
r

ℓψ  based spherical functions to describe atom states in the calculations of 

perturbations.  Results related to hydrogen like and alkaline atoms for bound state shown in various books [2][3][4][5], 

as far as determination of energy levels are concerned, are directly used without demonstration. 

2. APPROXIMATION CONSIDERATIONS  

Let introduce the following considerations: 

- we consider a test electron among particles of the atom and we follow its behaviours, 

- when perturbations enter into force, behaviours of test electron present certain structure characterized by regular 

and chaotic aspect, 

- when test electron is near the nuclei, it is subject of  much more effect of the Coulombian potential of +Ze charges 

of the nuclei, 

- when test electron is far from the nuclei, it sees +Ze  charges of nuclei and –(Z- α )e charges within the electronic 

clouds, α  is number of electron in non saturated shell. 

3. PERTURBATION APPROACH  

Consider atom states described with wave function )r(m,,n
r

ℓψ solutions of Schrödinger equation. We start from 

atom states  with  0n ≠ , 0ℓ = , m=0, which correspond to energy ,...E,E,E 3s2s1s  Let be : 
ona

2Zbn = , rbu n= . 

)u(L)r(R
2
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1no,no,o,n =

π
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Since continuity conditions for wave function and its first derivatives must be satisfied, let write )r(o,o,n
r

ψ  at points 

r
r

and 'r
r

 such that ε+= r'r , where ε  is  infinitely small quantity, r<<ε , contributing to the extent of chaos 

structure for one period as effect of perturbations. In other words, )'r(o,o,n
r

ψ  describe then a perturbed state in which r 

and ε  are variables representing respectively regular aspect and chaotic aspect of the electron behaviours. We have : 
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Since  r<<ε  , in first approximation, we can express )r(o,o,n εψ +  in the form: 
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where indexes per and i indicate respectively  perturbed state and initial non perturbed state, and     

 

 







+

+






=

Z)εη(n,10
0Z)εη(n,1

εb
2
1-expM n     (1) 

At the vicinity of 0=ε , 1)Mdet( ≈ . M can be expressed in the form of Twist matrix [3][5][6]: 
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To simplify notation let write simply η  for )Z,n(η . It is easy to calculate, by recurrence, matrices in equations (1) 

for N periods, where N is very high number. Calculations lead to: 

( ) 
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we have , 1)Adet( N ≈ . Then we write NA  in the Twist form: 
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We obtain:   
N
kπ

φ =  , and 0k)1()kcos(Ncos ≥-== πφ . Therefore, k must be even. Let be k=2p, with p natural 

number. Matrix MN is given by:  Nn
N Aε)exp(bM =   

In developing the exponential term within the matrix MN at the vicinity of  ε =0, we have :  
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Hence it seems that we are dealing with equation that gives perturbed state from initial one with equation: 
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We can see that when 0=ε  , that is there is no perturbation and chaotic aspect vanishes, we have:  
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since oM  become identity matrix. 

It is important to note that period is changing due to chaotic aspect. Let write equation (2) with atom states described by  

nsψ : 
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Calculating the derivative of perns )(ψ  from the first equation of  (3) and identifying it with the second equation, we 
have the following condition:  
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which shows that period is changing; one of characteristics of chaotic structure.  

Now, consider application to atom state s1ψ for He. From equation (3), we have: 
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Perturbation calculations using usual method through the development of s1ψ  in terms of ε gives: 
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Then we can calculate perturbed energy level E1s for He atom. We consider the Hamiltonian of the He of the form [2]: 

 )1()o( HHH += , where 21
)o( HHH +=  is composed of Hamiltonian of hydrogen like atom for which 

energy levels and associated eigenfunctions are known and H(1) is perturbation of H . Assume each electron lies in 

fundamental state 1s, we have )r()r( 2s11s1
)o( ψψψ =  is eigenfunction of H(o). 
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Finally,  ZR
4
5

E )1(
s1 =   (4), where R is the Rydberg constant.   

Then, it is easy to show that we have the same perturbation of energy E1s than the usual method applied to He for the 

first order. For the second order perturbation, we have: 
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4. DISCUSSIONS  

Partial results we get in equations (4) and (5) are similar to that of usual perturbation methods. However, the presence 

of correction factor between brackets in equation (5) provides more advantage. The correction factor introduced by this 

method of perturbations gives opportunity to refine calculations and produces results which could be closer to 

experimental value of energy for the fundamental 1s of He atom, compared to other methods. In fact, correction factor 

could be appreciated with more precision depending upon the number N of period and hence the magnitude of chaos 

structure in test electron behaviours. In other words, we can improve calculations to bear better results with the 

determination of efficient value of N through iterative manner for calculations of the correction factor. The accuracy of 

results would depend upon the precision we wish to get in values of energy compared to experimental values. 

5. CONCLUSION  

Application of the method to atom He, in first approximation, gives similar results as well as usual perturbation 

methods. But the difference lies in the higher order perturbations where the correction factor is playing important role. 

It can be simulated with numerical calculations to refine value of perturbations and this would enable to go closer to 

experimental value of energy level for light atoms. The study is not yet completed and in the future, we hope to bring up 

concrete results from applications of the method to other light atoms like Lithium and so on. 
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