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Abstract : The distribution speeds and temperatures in two-dimensional mixed convection 
around an ellipsoid of revolution in rotation, plunged in an ascending flow of air containing 
particles of metallic oxide, are given starting from purely numerical procedure, based on a 
finite difference method and using the method of Keller known as “Block elimination” to 
solve  the linear equations. The variability of the physical properties of the air according to 
the temperature is taken into account and speed external of the boundary layer is calculated 
using the method of the singularities. We first studied the importance of the variability of the 
physical properties. Then, we conducted the survey of all possible combinations of three 
convection according to the parameters that characterise them which allowed us to calculate 
the Nusselt number and the coefficient of friction. The comparisons of the results for the three 
cases of the ellipsoids has been done. The importance of the consideration of the variability of 
physical properties of the air in high temperature has been demonstrated. 
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1. Introduction 
 

Many works and publications (Ali Ch. A., et al., 1995), (Lepalec G., 1986), 
(Raminosoa Ch. R. R., et al., 1994) and (Rakotomalala M., et al., 1994) have already been 
carried out concerning the flows generated by the uniform rotation of body with symmetric of 
revolution since they intervene in many apparatuses and industrial processes. In particular, in 
the industrial operations of obtaining metal deposits in gas phase, if the wall of the body is at 
high temperature. Most of the authors consider that the physical properties of the fluid are 
constant. Some authors, (Ali Ch. A., et al., 1995) and (Raminosoa Ch. R. R., et al., 1994) 
already studied the problems of variable physical properties in the case of hydrogen gas. 
Currently, the techniques of deposits are very developed in the laboratory within the frame 
work of the acceleration of the deposit rate. In this work, we consider the flow of a gas 
mixture, of T∞ = 25°C temperature, constituted by air containing particles of metallic oxide in 
small concentrations. This gas mixture is intended to give deposit on the hot wall, of Tp = 
400°C temperatures after dissociation, with the result that in the vicinity of the wall, the 
physical properties of the air become variable. To standardize the thickness of deposits, it 
should be considered that the solid which will receive the deposit is in uniform rotation. To 
obtain an axisymmetric flow, it is considered that the body is an ellipsoid of revolution. The 
objective of this work consists in establishing the results ok to the transfers of impulse and 
heat in mixed convection around this body. As the transfers are coupled and two-dimensional, 
the difficulties which results from it are worth to be studied. 
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2. Studied system  
 
Figure 1 represents the curvilinear frame of reference x, y and θ with local reference 

mark associated (M, t
r
, n
r

 , eθ

uur
). M is a point of the surface of the ellipsoid. We treat the 

problem with these hypothesis : the flows are laminar and permanent ; no heat source emerges 
in the system : chemical reaction caused at the time of the deposit does not have influence on 
the mechanism of transfer ; dissipation of energy by viscosity and transfers by radiations are 
negligible ; the effects Dufour and Sorret are negligible ; physical properties of the fluid with 
infinite are constant ; the fluid is encompassed to a perfect gas for the calculation of its 
voluminal dilation coefficient. 

 
Figure 1: Schematic representation of the studied and referential  systems   
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3. Equations of transfer 

Under these conditions, the equations of transfer are written : 
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Conditions to the limits :          For y  = 0  :  U = V = 0 ; W =  r ω  ; T  = Tp 
                                                                                                                                     (2) 
 For y → ∞ : U   →  Ue ; W   →  0 ; T  →  T∞ 
        

The physical properties of the air in the boundary layer are calculated starting from the 
following empirical formulas (Midoux N., 1985) : 
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ρ(T)  =  230.T- 1 .Kg.m-3              ;           Cp(T)  =  1050J.Kg-1.K-1   
                                                                                                                                                  (3) 
µ(T)  =  5,2.10-7.T0,635.Pa.s     ;           λ(T)      =  2,66.10-4.T0,805.J.s-1.m-1.K-1   

                                            
Where T is in Kelvin degree. According to KNUDSEN and KATZ (Midoux N., 1985), 

these relations apply correctly if Re∞ < 3.105, Pr > 0,6 and if the properties of the fluid are 
evaluated with 0,58(T p – T∞) +T∞. For this case : Re∞ = 8.103 ; Pr = 0,71. With the temperature 
reference Tr = 25°C :  
 
ρ(Tr)     =  0,771, Kg.m-3          :    µ(Tr)  = 19,376.10-6 , Pa.s   
 
Cp(Tr)   =  1050, J.Kg-1.K-1  ; λ(Tr)  =  0,026, W.m-1.K-1.  

 
The speed at the external border of the boundary layer is calculated numerically using 

the method of singularities. Then, the results are directly introduced into the resolution of the 
equations of transfer. 

   
4. Adimensionalisation of the equations  

Choice of the adimensional sizes 

Cp*  =  Cp/Cp∞  ;  r*  =  r/L  ;  T*  =  (T - T∞)/(T - Tp)     ;   x*  =  x/L  
  
 λ*  =  λ/λ∞  ;  µ*  =  µ/µ∞    ;   ρ*  =  ρ/ρ∞  ;   Pr = ν∞/a∞  
 
Ue* = Ue/U∞  ;        Reω = ω (L)2/ν∞   ;     Re∞ = U∞ L/ν∞   ;  B = ( Reω / Re∞)2   
 
Ω = Gr/( Re∞)2  ;  Ω’  = Gr/( Reω)2  ;  Gr = gaβ t(L)3(Tp - T∞ )/( ν∞)2      
 
Then  
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For y = 0 : U* = V* = 0 ;  W* = n4 r* ; T* = 1  
                   (6) 
For y*→ ∞  : U* = n5Ue*; W* = T* = 0        
 
With 

(4) 
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Coefficients Ci (i = 1 : axial convection ; i = 2 : natural convection ; i = 3 : rotatory 

convection) can take value one or null.   
 
5. Local sizes  
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6. Method of resolution  

We adopt the finite difference method to discretize the adimensionals equations and 

the method of Keller known as “Block elimination” was used to solve the linear system.   

7. Design criteria  
 

The horizontal semi-axis “ a = 0,5m” of the ellipsoid is the characteristic length. For 
The number of Prandtl is considered in the Tr reference temperature. We take like the step of 
calculation ∆y* = 0,03. 

 
8. Results 
 
 8.1 Pure natural convection(C1 = C3 = 0 and C2 = 1) 
 

(8) 
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Figuire.2 shows the variations of NuGr-1/4 according to x* . It appears more significant, 
when  the physical properties becomes function of the temperature. x* influence reduces this 
number, which means that the thermal transfer decreases. But the difference between the two 
stays more or less uniform around 15% to x* = 100°  where the separation of thermal layer 
limit starts. 

 
Figure.2   Variations of NuGr-1/4 according to x* in pure natural convection. 
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8.1 Pure axial convection(C1 = 1 and C2 = C3 = 0) 
 
Figure.3 shows the variations of T*, according to y*. We note that the length of the 

thermal boundary layer increases and the mass of fluid becomes hotter when the physical 
properties prove to be variable.  

Figure.4 illustrates the variations of U*, according to y*. We notice that depending 
only on the shape of the wall, speed outside the boundary layer remains the same one in both 
cases, and it is reached more quickly when the physical properties remain constant. This 
means that the length of the boundary layer increases when the physical properties become 
variable. 

 
Figure.3 Variations of T* according to y* in pure axial convection.  
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Figure.4 Variations of  U* according to y* in pure axial convection. 
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9 Influence of the geometrical configuration of the body(C1 =  C2 = C3 = 1) 
 

We use the adimensional parameter R = a/b comparing the lengths of the vertical 
horizontal half axes. 

Figure.5 illustrates the variations of CFx according to x*. We notice that CFx is an 
increasing function of x* and passes by a maximum then decrease rapidly. The maximum of 
CFx and its sudden decrease beyond announces a separation of boundary layer. Besides, for 
the case of a sphere(R = 1), the maximum takes place at the neighbourhood of x * = 62°. It’s 
worth noticing that (Lepalec G., 1986) attract the attention on the existence of a maximal 
friction around 60° for the case of a sphere. The same for (Raminosoa Ch. R. R., and al., 
1994), when they studied the flow of gas hydrogen to variable physical properties around a 
sphere. 

Figure.5 Variations of CFx according to x*, for B = 1 and Ω = 1 
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Discussion 
 

When physical properties fluid become variable, the transfer and the lengths of the 
boundary layers increases. In addition, if the temperature of the wall reaches 400°C, the 
results is only a more significant relative variation. Therefore, the insufficiency of constant 
physical properties hypothesis in this study is notorious when the temperature is high. 

 
The sudden variation of the parietal sizes  to a certain value of x* means that the 

separation of boundary layers starts. The results obtained show that the wall of a flattened 
ellipsoid can be made uniformly accessible from the thermal transfers point of view and that 
the prevalence of the natural convection is more significant in the fields of heat exchange. 
That means that the influence of those gives a great out put on the activity of the reaction in 
gas phase. 
 
Conclusion 
 

At the conclusion of this work, we have the data-processing calculation program  
FORTRAN. By respecting the preceding simplifying hypothesis, the distribution speeds and 
temperature are obtained from the resolution of the equations of transfers then, they make 
possible the termination of the local values of the number of Nusselt and the coefficients of 
friction. The consideration of the variability of the physical properties of the air, when the 
temperature is raised, is manifest for the survey of this phenomenon 
 
Nomenclature  
 
Latin Letters  

a , b   :  lengths of the ellipsoid horizontal and vertical half axes, m        
a8    :  the thermal diffusivity of the fluid ad infinitum, m2.s-1   
B   :  admensional parameter of rotation 
CFx , CF?  :  Coefficients of friction following x and ?    
Cp   :  mass heat- storage capacity, J.Kg-1.K-1  
uur

re
uur

ze , 
ur
n ,  

r
t   :  unit vectors 

Gr :  Grashof number   
g :  acceleration of gravity, m.s-2 

h  :  coefficient of transfer by convection, W.m-2.K-1 
Nu :  Nusselt number  
L   :  caracteristic length ( L  = a), m   
Pr  :  Prandtl number   
r   :  radial distance, m 
Re8 , Re?   :  Reynolds number relating to forced and rotatory convection 
U, V,  W  :  speeds according to x, y and ?, m.s-1   
T   :  temperature, K 
Ue :  external speed of the boundary layer, m.s-1  
x, y  :  curvilinear abscissa and normal local coordinates, m 
z   :  side, m   
 
Greek letters: 

a, ß, ϕ  :  angles, rd   
ßt

  :  voluminal expansion coefficient of the fluid ßt
  = 1/T, K-1   

ρe   :  radius vector, m   
λ :  thermal conductivity of the  fluid, W.m-1.K-1   
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µ  :  dynamic viscosity  of the fluid, Kg.m-1.s-1   
ρ :  voluminal mass  of the fluid, Kg.m-3   
?   :  azimuth angle, rd   
?8    :  kinematics viscosity of the fluid ad infinitum , m2.s-1      
?    :  angular velocity of rotation, rd.s-1 

O, O’ :  parameters of the natural and rotatory convection 
 
Exposit 
 
*  :  adimensional value  

Indications 

∞    : far from the wall 

p  : wall  
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