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Abstract

In soliton models for baryons the congruous description of hadronic decays
of baryon resonances that are described as collective excitations has been a
long standing problem. Here I present a solution to this problem for the pen-
taquark channel in the Skyrme model. The resulting kaon–nucleon scattering
amplitude satisfies large NC consistency conditions and falsifies estimates of
tiny pentaquark widths that are based on axial current matrix elements.
Rather this specific soliton model predicts the width to be about 50MeV and
a mass of about 1800MeV, which are typical hadronic scales.

1 Introduction

Soliton models for baryons are based on action functionals of meson fields,
Γ = Γ[Φ]. These action functionals contain classical (static) soliton solu-
tions, Φcl, that are identified as baryons. Their interaction with mesons is
described by the (small) meson fluctuations about the soliton: Φ = Φcl + φ.
By pure definition, the expansion of Γ[Φ] about Φcl does not contain a term
that is linear in φ to be interpreted as Yukawa interaction. As in experiment,
resonance properties must be extracted from meson baryon scattering am-
plitudes. Two–meson processes acquire contributions from Γ(2), the O(φ2)
piece in the expansion of Γ[Φ] about Φcl. It simultaneously represents the sys-
tematic (but not accurate) expansion in NC , the number of color degrees of
freedom: Γ = O(NC), Γ(2) = O(N0

C) while terms O(φ3) vanish as NC → ∞.
Hence Γ(2) contains all large–NC information about hadronic decays of res-
onances. Conversely, this sheds light on ad hoc computations of hadronic
decay widths in soliton models: The large–NC limit of their results must be
identical to those obtained from Γ(2). Unfortunately, the most prominent
baryon resonance, the Δ, is stable for NC → ∞ and its decay is not subject
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to this litmus–test. Soliton models in flavor SU(3) are more challenging: In
the so–called rigid rotator approach (RRA) resonances emerge that dwell in
the anti–decuplet representation of flavor SU(3). The most discussed (and
disputed) such state is the Θ+ pentaquark with zero isospin and strangeness
S = +1. The decay properties of anti–decuplet states are indeed O(N0

C). For
S = −1 the equations of motion for φ yield a P -wave bound state that serves
to describe the ordinary hyperons, whence the notion bound state approach
(BSA). The litmus–test requires that the BSA and RRA give identical re-
sults for the Θ+ properties as NC → ∞. This did not seem true and it was
prematurely argued that pentaquarks were a mere artifact of the RRA [1].
Hence the comparison between the BSA and RRA serves (i) to verify that
the pentaquark is a genuine prediction of soliton models and (ii) to provide
an unambiguous computation of pentaquark widths. Details of these Skyrme
model studies are reported in ref. [2]. Ref. [3] may be consulted for a review
on SU(3) soliton models.

2 Rotation–Vibration Approach & Θ+ width

Restricting the P–wave fluctuations to the modes spanned by rigid rotations
yields two bound states of strangeness S = ±1 with energies

ω± =
1

2

[√
ω2

0 +
3Γ

2ΘK

± ω0

]
where ω0 =

NC

4ΘK

. (1)

Here ΘK is the moment of inertia for the rotation of the soliton into strange-
ness direction and Γ is the functional that measures flavor symmetry break-
ing. Both functionals are O(NC) so that ω± = O(N0

C). While ω− is the
energy of the above mentioned bound state describing ordinary hyperons,
ω+ is eventually utilized to construct pentaquark states. When the restric-
tion that BSA modes η are spanned by the rigid rotation is waived, ω− < mK

corresponds to a true bound state but ω+ turns into a continuum state. Thus,
a pronounced resonance structure would be expected around ω = ω+. Un-
fortunately, this is not the case, as is seen from fig. 1 [1].

In the RRA the collective coordinates A(t) ∈ SU(3) that parameterize
the flavor orientation of the soliton are canonically quantized. The resulting
Hamiltonian is exactly diagonalized for arbitrary (odd) NC [2] and symmetry
breaking [4]. The resulting mass difference between the states that for NC = 3
correspond to the Λ (Θ+) and the nucleon, approaches ω− (ω+) as NC → ∞.

The ultimate comparison requires to generalize the RRA to the rotation–
vibration approach (RVA)
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Figure 1: Phase shift in the BSA (middle, black line) and the resonance
phase (top, red line) shift after removal of the background (bottom, blue
line) contribution in the RVA that emerges from the constraint 〈η|z〉 = 0.

U(x , t) = A(t)ξ0(x) exp

[
i

fπ

7∑
α=4

λαη̃α(x , t)

]
ξ0(x) A†(t) , (2)

where ξ0(x) = exp
[
ix̂ · τF (|x|)/2] is the chiral field representation of the

soliton (Φcl). Avoidance of double counting enforces the constraint 〈η̃|z〉 !
= 0,

where z ∼ sin(F/2) is the collective mode wave–function. Eq. (2) generates a
term in Γ(2) that is linear in both η̃ and the collective modes, parameterized
by A(t). This contribution corresponds to Yukawa exchanges and induces
a separable potential VY for η̃. In ref. [2] we have shown that in the limit
NC → ∞ the resulting equation of motion is solved by η̃ = η − 〈z|η〉z.

Thus the BSA and RVA are indeed equivalent in the large NC limit since
the phase shifts extracted from η and η̃ are identical as z(|x|) is localized in
space. Furthermore, the RVA provides a distinction between resonance and
background contributions. Applying the R–matrix formalism shows that
for NC → ∞ VY exactly contributes the resonance phase shift shown in
fig. 1. Thus pentaquarks are also predicted by the BSA; just well hidden.
Yet, collective coordinates are mandatory to obtain finite NC corrections: e.
g., for mK = mπ the mass difference M(Θ) − M(N) increases by a factor
two from ω0 to (NC + 3)/4ΘK . Skyrme model calculations indicate that
M(Θ) − M(N) might be as large as 900MeV [2]. The R–matrix formalism
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Figure 2: Skyrme model prediction for the decay width, Γ(ω) of Θ+ and its iso–partner
Θ∗+ for NC = 3 as function of the kaon momentum k =

√
ω2 − m2

K , cf. eq. (3).

finally yields the Θ+ width as a function of the kaon momentum [2]

Γ(k) = 2kω0

∣∣∣∣XΘ

∫ ∞

0

r2dr z(r)2λ(r)ηωk
(r)

∣∣∣∣2 + O (
m2

K − m2
π

)
. (3)

Here ηωk
(|x|) is the P–wave background wave–function (η =̂ η̃ for VY ≡ 0)

with energy ωk =
√

k2 + m2
K , λ(|x|) is a radial function that stems from the

Wess–Zumino term and XΘ is the nucleon–Θ+ transition matrix element of
a collective coordinate operator. The resulting width is shown for NC = 3
in fig. 2. Typical – though model dependent – results yield a Θ+ width of
around 50MeV [2]. Remarkably, the width of the Θ∗+, the I = 1 partner of
Θ+, turns out smaller. In any event, it seems very unlikely that chiral soliton
models predict a light long–living pentaquark.

3 Conclusion

Here I have compared the BSA and RRA to chiral soliton models. While the
former gives the exact model results in the large NC limit and thus serves
as a litmus–test, the latter incorporates substantial finite NC corrections.
This comparison requires the consideration of harmonic oscillations in the

473



H. Weigel Soliton Model Approach ...

RRA as well. They are incorporated via the RVA which clearly shows that
pentaquarks are genuine resonances within chiral soliton models.

In the flavor symmetric case the interaction Hamiltonian contains only a
single structure (XΘ in eq. (3)) of SU(3) matrix elements for the Θ+ → KN
transition. This proves earlier soliton model approaches [5] incorrect that
adopted any possible structure that could contribute and fitted coefficients
from a variety of hadronic decays under the assumption of SU(3) relations.

Since the presented analysis merely concerns the treatment of kaon de-
grees of freedom, the qualitative results are valid for any chiral soliton model.
In essence, these models models do not predict very light and very narrow
pentaquark resonances.
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