K-matrix

and

Dalitz plot analysis

Charm 2007
Cornell - August 5-8

Sandra Malvezzi
INFN Milano Bicocca

Outline

- Introduction:
- Dalitz plot and K-matrix formalism ...the issue
- Analysis:
- Implementation of K-matrix formalism in D-decays
- Examples from FOCUS
- $\mathbf{D}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \quad$ (2003) 1500 evts
- D+ $\rightarrow \mathbf{K}^{-} \pi^{+} \pi^{+}$(2007) $\mathbf{5 3 0 0 0}$ evts

- Results and Conclusions
- What we have learnt so far
- How we should proceed ...
- prospects for the future

Dalitz plot: the revenge

- SPIRES search for " title Dalitz and date after 1999"

137 entries

after 2005
42 entries

Experiments:

FOCUS, E791, CLEO (-c) , BaBar-Belle, BES

- \longrightarrow From D to B decays

From decay dynamics to CPV to New Physics

$$
\begin{aligned}
& \mathbf{B} \rightarrow \rho \pi \\
& \mathbf{B} \rightarrow \mathbf{D}^{(*)} \mathbf{K}^{(*)}
\end{aligned}
$$

α angle
γ angle

The issue

- to go from $\mathrm{B} \rightarrow \pi \pi \pi$ to $\mathrm{B} \rightarrow \rho \pi$ means selecting and filtering the desired states among the possible contributions, e.g. $\sigma \pi, \mathrm{f}_{0}(980) \pi$, $\sigma \rho, \sigma \sigma, \rho \pi \pi \ldots$
- a model for \mathbf{D}^{0} decay is needed
- $(\mathrm{K} \pi) \pi, \mathbf{K}(\pi \pi)$

...and a question

- In the era of precision measurements
- How to deal with the underlying strong dynamics effects?
- The $\pi \pi, \mathrm{K} \pi \mathbf{S}$-wave are characterized by broad, overlapping states: unitarity is not explicitly guaranteed by a simple sum of Breit -Wigner (BW) functions
- Independently of the nature of σ, κ (genuine resonances or strong dynamics structures), they are not simple BW's
- $\mathbf{f}_{\mathbf{0}}(\mathbf{9 8 0})$ is a Flatté-like function, coupling to KK and $\pi \pi$

.. a possible answer

a bridge of knowledge and terminology

- Many problems are already well known in nuclear and intermediate energy physics

K-matrix

- A cultural bridge towards the high energy community
- A common jargon
- An effort has been made in FOCUS to apply it to the Heavy Flavor sector
- interesting for future B-studies

What is K-matrix? \quad E.P.Wigner,

 Phys. Rev. 70 (1946) 15 S.U. Chung et al.Ann. Physik 4 (1995) 404

- It follows from S-matrix and, because of S-matrix unitarity, it is real

$$
S=I+2 i \rho^{1 / 2} T \rho^{1 / 2}
$$

$$
K^{-1}=T^{-1}+i \rho \quad T=(I-i K \cdot \rho)^{-1} K
$$

- Viceversa, any real K-matrix would generate an unitary S-matrix
- This is the real advantage of the K-matrix approach:
- It (heavily) simplifies the formalization of any scattering problem since the unitarity of S is automatically respected.
- For a single-pole problem, far away from any threshold, a K-matrix amplitude reduces to the standard BW formula
- The two descriptions are equivalent
- In all the other cases, the BW representation is no longer valid
- The most severe problem is that it does not respect unitarity

Adding BWs a la
"traditional Isobar Model"

- Breaks Unitarity
- Heavily modify the phase motion!

From Scattering to Production

- Thanks to I.J.R. Aitchison (Nucl. Phys. A189 (1972) 514), the K-matrix approach can be extended to production processes
- In technical language,
- From

$$
T=(I-i K \cdot \rho)^{-1} K
$$

- To

$$
F=(I-i K \cdot \rho)^{-1} P
$$

- The P-vector describes the coupling at the production with each channel involved in the process
- In our case the production is the D decay

First FOCUS study: $\mathrm{D}^{+}, \mathrm{D}_{\mathrm{s}}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$

$$
F=(I-i K \cdot \rho)^{-1} P
$$

Beside restoring the proper dynamical features of the resonances, K-matrix allows for the inclusion of all the knowledge coming from scattering experiments: enormous amount of results and science!

$\pi \pi \mathrm{S}$-wave scattering parametrization

"K-matrix analysis of the $00++$-wave in the mass region below 1900 MeV "
V.V Anisovich and A.V.Sarantsev Eur.Phys.J.A16 (2003) 229

- A global fit to (all) the available data has been performed

GAMS
GAMS
BNL
CERN-Munich Crystal Barrel Crystal Barrel Crystal Barrel Crystal Barrel E852

$$
\begin{aligned}
& \pi \mathbf{p} \rightarrow \pi^{0} \pi^{0} \mathbf{n}, \eta \eta \mathbf{n}, \eta \eta ' \mathbf{n},|\mathbf{t}|<\mathbf{0 . 2}\left(\mathrm{GeV} / \mathbf{c}^{2}\right) \\
& \pi \mathbf{p} \rightarrow \pi^{0} \pi^{0} \mathbf{n}, \mathbf{0 . 3 0}<|\mathbf{t}|<\mathbf{1 . 0}\left(\mathbf{G e V} / \mathbf{c}^{2}\right) \\
& \pi \mathbf{p}^{-} \rightarrow \mathbf{K K \mathbf { K }} \\
& \pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-} \\
& \mathbf{p} \overline{\mathbf{p}} \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \pi^{0} \eta, \pi^{0} \eta \eta \\
& \overline{\mathbf{p p}} \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \pi^{0} \eta \\
& \mathbf{p} \overline{\mathbf{p}} \rightarrow \pi^{+} \pi^{-} \pi^{0}, \mathbf{K}^{+} \mathbf{K}^{-} \pi^{0}, \mathbf{K}_{\mathbf{s}} \mathbf{K}_{\mathbf{s}} \pi^{0}, \mathbf{K}^{+} K_{\mathrm{s}} \pi^{-} \\
& \mathbf{n} \overline{\mathbf{p}} \rightarrow \pi^{0} \pi^{0} \pi^{-}, \pi^{-} \pi^{-} \pi^{+}, \mathbf{K}_{\mathbf{s}} K^{-} \pi^{0}, \mathbf{K}_{\mathbf{s}} \mathbf{K}_{\mathbf{s}} \pi^{-} \\
& \pi-\mathbf{p} \rightarrow \pi^{0} \pi^{0} \mathbf{n}, \mathbf{0}<|\mathbf{t}|<\mathbf{1 . 5}\left(\mathbf{G e V} / \mathbf{c}^{2}\right)
\end{aligned}
$$

- It provided the K-matrix input to our three-pion D analysis

$\mathrm{D}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$K-matrix fit results

PLB 585 (2004) 200

Reasonable fit with no retuning of the A\&S K-matrix.
No new ingredient (resonance) required not present in the scattering!

$\mathrm{D}_{\mathrm{s}}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$K-matrix fit results

decay channel	fit fractions (\%)	phase (deg)
(S - wave) $\boldsymbol{\pi}^{+}$	$\mathbf{8 7 . 0 4} \pm \mathbf{5 . 6 0} \pm \mathbf{4 . 1 7}$	$0($ fixed $)$
$\mathbf{f}_{\mathbf{2}} \mathbf{(1 2 7 5)} \boldsymbol{\pi}^{+}$	$\mathbf{9 . 7 4} \pm \mathbf{4 . 4 9} \pm \mathbf{2 . 6 3}$	$\mathbf{1 6 8 . 0} \pm \mathbf{1 8 . 7} \pm \mathbf{2 . 5}$
$\boldsymbol{\rho}^{\mathbf{0}} \mathbf{(1 4 5 0)} \boldsymbol{\pi}^{+}$	$\mathbf{6 . 5 6} \pm \mathbf{3 . 4 3} \pm \mathbf{3 . 3 1}$	$\mathbf{2 3 4 . 9} \pm \mathbf{1 9 . 5} \pm \mathbf{1 3 . 3}$

$$
m_{l o w}^{2}
$$

C.L fit 3%

Yield $\mathrm{D}^{+}=1527 \pm 51$ evts
Yield $D_{s}=1475 \pm 50$ evts

The high statistics test

- Three-pion analysis suggested:
- two-body dominance
- consistency with scattering data
- It was important (mandatory) to test the formalism@high statistics
- the $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+}$channel, i.e. my latest nightmare

The $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+}$decay 53653 evts...another story!

e-Print: arXiv:0705.2248 [hep-ex] (to appear in Phys. Lett. B)

The $\mathrm{K} \pi$ S-wave scattering parametrization

(Mike Pennington)

- two isospin states ($\mathrm{I}=1 / 2$ and $\mathrm{I}=3 / 2$) \Longleftrightarrow two K-matrices - fit S-wave $\mathrm{K}^{-} \pi^{+} \rightarrow \mathrm{K}^{-} \pi^{+}$LASS data above 825 MeV

Nucl. Phys,.B 296 (1988) 493 and $\mathrm{K}^{-} \pi^{-} \rightarrow \mathrm{K}^{-} \pi^{-}$scattering from Estabrooks et al

Nucl. Phys,.B 133 (1978) 490

- extrapolate down to $\mathrm{K} \pi$ threshold according to dispersive analysis consistent with ChPT (Buttiker et al, Eur.Phys.J C33 (2004) 409).

$\mathrm{I}=1 / 2 \mathrm{~K}$-matrix

1 pole -2 channels ($\mathrm{K} \pi-\mathrm{K} \eta^{\prime}$)

$$
K_{11}=\left(\frac{s-s_{01 / 2}}{s_{\text {norm }}}\right)\left(\frac{g_{1} \cdot g_{1}}{s_{1}-s}+C_{110}+C_{111} \widetilde{s}+C_{112} \widetilde{s}^{2}\right)
$$

$\mathbf{g}_{1}, \mathbf{g}_{2}$: real couplings of the $\mathbf{s}_{\mathbf{1}}$ pole to the first and second channel

$$
K_{22}=\left(\frac{s-s_{01 / 2}}{s_{n o r m}}\right)\left(\frac{g_{2} \cdot g_{2}}{s_{1}-s}+C_{220}+C_{221} \widetilde{s}+C_{222} \widetilde{s}^{2}\right)
$$

$\mathbf{s}_{\mathbf{0 1 / 2}}=0.23 \mathrm{GeV}^{2}$ is the Adler zero position in the $\mathrm{I}=1 / 2 \mathrm{ChPT}$ elastic scattering amplitude

$$
K_{12}=\left(\frac{s-s_{01 / 2}}{s_{\text {norm }}}\right)\left(\frac{g_{1} \cdot g_{2}}{s_{1}-s}+C_{120}+C_{121} \widetilde{s}+C_{122} \widetilde{s}^{2}\right)
$$

$$
\begin{aligned}
& \mathrm{s}=\mathrm{m}^{2}(\mathrm{~K} \pi) \\
& \mathrm{s}_{\mathrm{norm}}=\mathrm{m}_{\mathrm{K}}^{2}+\mathrm{m}_{\pi}^{2} \\
& \widetilde{\mathrm{~S}}=\mathrm{s} / \mathrm{s}_{\mathrm{norm}^{-1}}-1
\end{aligned}
$$

Values of prometer for the $I=1 / 2 K$ matrir

Bake $\left(\mathrm{Guv}^{2}\right)$	Coupling (Gev)	C_{11}	C_{12}	c_{2}
$\bar{x}_{1}=1.999$				
	$s=0.71072$			
	$h_{2}=-00223$			
		$\tau_{110}=0.7229$	$C_{120}=0.15040$	$c_{20}=0.1764$
		$c_{111}=-0.1509$	$C_{122}=-0.0880$	$C_{21}=-0.019$
		$c_{112}=0.0011$	$C_{122}=0.0025 \%$	$C_{22}=0.000565$

S-matrix pole : $\mathrm{E}=\mathrm{M}-\mathrm{i} \Gamma / 2=1.408-\mathrm{i} 0.110 \mathrm{GeV}$

$\mathrm{I}=3 / 2 \mathrm{~K}$-matrix 1 channel scalar function

$$
K_{3 / 2}=\left(\frac{s-s_{03 / 2}}{s_{\text {norm }}}\right)\left(D_{110}+D_{111} \widetilde{s}+D_{112} \widetilde{s}^{2}\right)
$$

$\mathbf{s}_{03 / 2}=0.27 \mathrm{GeV}^{2}$ is the Adler zero position in the $\mathrm{I}=3 / 2 \mathrm{ChPT}$ elastic scattering amplitude

$$
\begin{aligned}
& \mathrm{s}=\mathrm{m}^{2}(\mathrm{~K} \pi) \\
& \mathrm{s}_{\text {norm }}=\mathrm{m}^{2}{ }_{\mathrm{K}}+\mathrm{m}^{2}{ }_{\pi} \\
& \widetilde{\mathrm{S}}=\mathrm{s} / \mathrm{s}_{\text {norm }}-1
\end{aligned}
$$

$$
\begin{aligned}
& D_{110}=-0.22147 \\
& D_{111}=0.026637 \\
& D_{112}=-0.00092057
\end{aligned}
$$

P and F -vectors

- P-vectors

$$
\begin{array}{ll}
\left(P_{1 / 2}\right)_{1=K \pi}=\frac{\beta g_{1} e^{i \theta}}{s_{1}-s}+\left(c_{10}+c_{11} \hat{s}+c_{12} \hat{s}^{2}\right) e^{i \gamma_{1}} & \\
\left(P_{1 / 2}\right)_{2=K \eta^{\prime}}=\frac{\beta g_{2} e^{i \theta}}{s_{1}-s}+\left(c_{20}+c_{21} \hat{s}+c_{22} \hat{s}^{2}\right) e^{i \gamma_{2}} & \hat{s}=s-s_{c} \\
s_{c}=2 \mathrm{GeV}^{2} \\
P_{3 / 2}=\left(c_{30}+c_{31} \hat{s}+c_{32} \hat{s}^{2}\right) e^{i \gamma_{3}} &
\end{array}
$$

...and F-vectors

$$
\begin{aligned}
& F_{3 / 2}=\left(I-i K_{3 / 2} \rho\right)^{-1} P_{3 / 2} \\
& \left(F_{1 / 2}\right)_{1=K \pi}=\left(I-i K_{1 / 2} \rho\right)_{1 j}^{-1}\left(P_{1 / 2}\right)_{j}
\end{aligned}
$$

$\beta, \theta, \mathrm{c}_{\mathrm{ij}}, \gamma_{\mathrm{i}}$ are the free parameters, all the others are fixed to scattering

...finally ready to fit $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+}$

$\mathrm{m}_{\mathrm{K}^{-} \pi^{+}}{ }^{+}$mass projection $\left(\mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$

$\mathrm{m}_{\mathrm{K}^{-} \pi^{+}}$mass projection $\left(\mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
$\chi^{2} /$ d.o.f $=\mathbf{1 . 2 7} \quad$ total D decay amplitude
C.L 1.2%

$$
M=\left(F_{1 / 2}\right)_{1}
$$

$(s)+F_{3 / 2}(s)+\sum_{n} a_{n} e^{i \delta_{n}} A_{n}$

BW-like for $\mathrm{J}>0$ states
$c_{10}=1.655 \pm 0.156 \pm 0.010 \pm 0.101$
$c_{11}=0.780 \pm 0.096 \pm 0.003 \pm 0.090$
$c_{12}=-0.954 \pm 0.058 \pm 0.0015 \pm 0.025$
$c_{20}=17.182 \pm 1.036 \pm 0.023 \pm 0.362$
$c_{30}=0.734 \pm 0.080 \pm 0.005 \pm 0.030$
Total S-wave fit fruction $=83.23 \pm 1.50 \pm 0.04 \pm 0.07 \%$ Isospin $1 / 2$ fruction $=207.25 \pm 25.45 \pm 1.81 \pm 12.23 \%$ Isospin $3 / 2$ fraction $=40.50 \pm 9.63 \pm 0.55 \pm 3.15 \%$
phase (deg)
$\theta=286 \pm 4 \pm 0.3 \pm 3.0$
$\gamma_{1}=304 \pm 6 \pm 0.4 \pm 5.8$
$\gamma_{2}=126 \pm 3 \pm 0.1 \pm 1.2$
$\gamma_{3}=211 \pm 10 \pm 0.7 \pm 7.8$

S-wave fraction
$83 \pm 1.5 \%$

$K_{2}^{*}(1430) \pi^{+}$	0.39 ± 0.09	296 ± 7	0.169 ± 0.017
$K^{*}(1410) \pi^{+}$	$\pm 0.004 \pm 0.05$	$\pm 0.3 \pm 1$	$\pm 0.010 \pm 0.012$
	0.48 ± 0.21	293 ± 17	0.188 ± 0.041
	$\pm 0.012 \pm 0.17$	$\pm 0.4 \pm 7$	$\pm 0.002 \pm 0.030$

Comparison with the isobar fit

-serves as the standard for fit quality -requires two "ad hoc" scalars states with free masses and widths (BW) with no reference to how these states appear in other $\mathrm{K} \pi$ interactions (an effective data description)

$$
k{ }_{k=464 \pm 28}^{\mathrm{m}=856 \pm 17} \mathrm{~K}_{0}^{*}(1430){ }^{\mathrm{m}=1461 \pm 4} \begin{aligned}
& \Gamma=177 \pm 8
\end{aligned}
$$

-Isobar and K-matrix fits show -same "hot spots" in the adaptive binning scheme -good agreement in vectortensor fit parameters) \mathbf{F} (

What else can we infer from F-vectors?

Phase comparison

K η ' threshold

Results (I)

- The hypothesis of the two -body dominance is consistent with the high statistics $\mathbf{D}^{+} \rightarrow \mathbf{K}^{-} \pi^{+} \pi^{+}$
- The first determination in \mathbf{D} decays of the $\mathrm{I}=\mathbf{1 / 2}$ and $\mathrm{I}=3 / 2$ for the S-wave $K \pi$ system has been performed
- Our results show close consistency with $K \pi$ scattering data, and consequently, with Watson's theorem predictions for two-body $K \pi$ interactions in the low $\mathrm{K} \pi$ mass region where elastic processes dominate.

Results (II)

- Our K-matrix representation fits along the real energy axis inputs on scattering data and ChPT in close agreement with those used by Descotes-Genon and Moussallam (Eur. Phys. J C48 (2006) 553) that locate k with

$$
\operatorname{mass}(653 \pm 15) \mathrm{MeV} / \mathrm{c}^{2}
$$

and

$$
\text { width }(557 \pm 24) \mathrm{MeV} / \mathrm{c}^{2}
$$

- Whatever \boldsymbol{k} is revealed by our data, it is the same as that found in scattering data

Results (III)

- Our K-matrix description gives a fit quality globally good.
- However it deteriorates at higher $\mathrm{K} \pi$ mass
- Two channels: $\mathrm{K} \pi$ and $\mathrm{K} \eta$ ':
- Reliable info on the former, poor constraints on the latter
- Improvements: using a number of D-decay chains with $K \pi$ final state interactions and inputting all these in one combined analysis in which several inelastic channels are included in the K-matrix formalism.
for the future!

Conclusions

- Dalitz plot analysis is teaching us much about hadronic decays. It will definitely keep us company over the next few years
- Some complications have already emerged
- expecially in the charm field
others (unexpected) will only become clearer when we delve deeper into the beauty sector
$-B_{s}$ will be a new chapter (PLB645 (2007) 201: $\left.B_{s} \rightarrow K \pi \pi, B_{s} \rightarrow K K \pi\right)$
- There will be work for both theorists and experimentalists
- Synergy invaluable!

The are no shortcuts toward ambitious and high-precision studies and NP search

Back-up slides

Isobar analysis of $\mathbf{D}^{+} \rightarrow \pi^{+} \pi^{+} \pi$ would instead require a new scalar meson: $\sigma \quad m=442.6 \pm 27.0 \mathrm{MeV} / \mathrm{c}$ $\Gamma=340.4 \pm 65.5 \mathrm{MeV} / \mathrm{c}$

Total D decay amplitude

$$
\begin{aligned}
& M=\left(F_{1 / 2}\right)_{1}(s)+F_{3 / 2}(s)+\sum_{n} a_{n} e^{i \delta_{n}} A_{n} \\
& A_{n}=F_{D} F_{r} \times\left|p_{1}\right|^{J}\left|p_{3}\right|^{J} P_{J} \cos \left(\theta_{13}^{r}\right) \times \frac{1}{m_{r}^{2}-m_{12}^{2}-i m_{r} \Gamma_{r}}
\end{aligned}
$$

\(\left.\begin{array}{l}F=1

F=\left(1+R^{2} p^{2}\right)^{--k}

F=\left(9+3 R^{2} p^{2}+3 R^{4} p^{4}\right)^{-k}\end{array}\right\}\)| $\frac{\text { Spin } 0}{\text { Spin } 1}$ |
| :--- |
| Spin 2 |\(\left\{\begin{array}{l}P_{J}=1

P_{J}=\left(-2 \overrightarrow{p_{3}} \cdot \vec{p}_{1}\right)

P_{J}=2\left(p_{3} p_{1}\right)^{2}\left(3 \cos ^{2} \vartheta_{13}-1\right)\end{array}\right.\)

Isobar fit parameters

Thble 2

Channe	Fit Eruction (\%)		Coetnckent
ncil-Tesoniat	$29.7 \pm+5$	$325 \pm+$	1.47 ± 0.11
	$\pm 1.5 \pm 2.1$ (ue kext	$\pm 2 \pm 1.2$	$\pm 0.06 \pm 0.08$
K^{-*} (192) ${ }^{+}$	13.7 ± 0.9	0 (lixal)	1 (1ixerd)
	$\pm 0.6 \pm 0.3$		
$K^{-1} 1410 \pi^{+}$	0.2 ± 0.1	350 ± 34	0.12 ± 0.103
	$\pm 0.1 \pm 0.04$	$\pm 17 \pm 15$	$\pm 0.003 \pm 0.01$
$\kappa^{*-6880)}$	1.8 ± 0.4	3 ± 7	0.36 ± 0.04
	$\pm 0.2 \pm 0.3$	$\pm 4 \pm 8$	$\pm 0.02 \pm 0.03$
$K_{2}(1430) \pi^{+}$	0.4 ± 0.05	719 ${ }^{\text {a }}$	0.17 ± 0.01
	$\pm 0.04 \pm 0.03$	$\pm 2 \pm 2$	$\pm 0.01 \pm 0.01$
$K_{0}^{2} \cdot 1430 \pi+$	17.5 ± 1.5	36 ± 5	1.13 ± 0.0
	$\pm 0.8 \pm 0.4$	$\pm 2 \pm 1.2$	$\pm 0.01 \pm 0.01$
*atr ${ }^{+}$	22.4 ± 3.7	199 ± 6	1.28 ± 0.10
	$\pm 1.2 \pm 1.5$ (ree Emil	$\pm 1 \pm 5$	$\pm 0.015 \pm 0.04$
	Mass (Mevi/k ${ }^{2}$)	Whith Mevaril	
$N_{0}^{*}(430)$	$14 \mathrm{GL} \pm + \pm 2 \pm 0.5$	$177 \pm 5 \pm 3 \pm 1.5$	
	$856 \pm 17 \pm 5 \pm 12$	$464 \pm 28 \pm 6 \pm 21$	

