CP violation in charm

Alexey A. Petrov Wayne State University

Table of Contents:

- Introduction
- CP-violation in charmed mesons
 - Observables
 - Expectations in the Standard and New Physics Models
- CP-violation in charmed baryons
- Conclusions and outlook

Introduction

Murphy's law:

Modern charm physics experiments acquire ample statistics; many decay rates are quite large.

THUS:

It is very difficult to provide model-independent theoretical description of charmed quark systems.

> Now, this does not apply to CP-violation in charm: both measurements and predictions are hard...

CP-violation preliminary

> In any quantum field theory CP-symmetry can be broken

1. Explicitly through dimension-4 operators ("hard")

Example: Standard Model (CKM): $\bar{\psi}_i \psi_k \stackrel{CP}{\Rightarrow} \bar{\psi}_k \psi_i, \varphi \stackrel{CP}{\Rightarrow} \varphi$ $\mathcal{L}_{Yuk} = \zeta_{ik} \bar{\psi}_i \psi_k \varphi + H.c. \stackrel{CP}{\Rightarrow} \mathcal{L}_{Yuk}$

2. Explicitly through dimension <4 operators ("soft")

Example: SUSY

3. Spontaneously (CP is a symmetry of the Lagrangian, but not of the ground state)

Example: multi-Higgs models, left-right models

> These mechanisms can be probed in charm transitions

CP-violation in charmed mesons

> Possible sources of CP violation in charm transitions:

> CPV in ∆c = 1 decay amplitudes ("direct" CPV) $A(D \to f) \equiv A_f = |A_1| e^{i\delta_1} e^{i\phi_1} + |A_2| e^{i\delta_2} e^{i\phi_2}, \quad \Delta \delta \neq 0, \Delta \phi \neq 0$ > CPV in $D^0 - \overline{D^0}$ mixing matrix (∆c = 2) $\begin{bmatrix} M - i\frac{\Gamma}{2} \end{bmatrix}_{ij} = \begin{pmatrix} A & p^2 \\ q^2 & A \end{pmatrix}$

$$R_m^2 = \left|\frac{p}{q}\right|^2 = \frac{2M_{12} - i\Gamma_{12}}{2M_{12}^* - i\Gamma_{12}^*} \neq 1$$

CPV in the interference of decays with and without mixing

$$\lambda_f = \frac{q}{p} \frac{A_f}{A_f} = R_m e^{i(\phi + \delta)} \left| \frac{A_f}{A_f} \right|$$

> One can separate various sources of CPV by customizing observables

Comment

> Generic expectation is that CP-violating observables in the SM are small

 $\Delta c = 1$ amplitudes

Penguin amplitude

> The Unitarity Triangle for charm:

$$V_{ud}V_{cd}^* + V_{us}V_{cs}^* + V_{ub}V_{cb}^* = 0$$

~ λ ~ λ ~ λ^5

With b-quark contribution neglected: only 2 generations contribute ⇒ real 2x2 Cabibbo matrix

Any CP-violating signal in the SM will be small, at most $O(V_{ub}V_{cb}^*/V_{us}V_{cs}^*) \sim 10^{-3}$ Thus, O(1%) CP-violating signal can provide a "smoking gun" signature of New Physics

Alexey Petrov (WSU)

How to observe CP-violation?

> There exists a variety of CP-violating observables

- 1. "Static" observables, such as electric dipole moment
- 2. "Dynamical" observables:
 - a. Transitions that are forbidden in the absence of CP-violation $CP[\text{initial state}] \neq CP[\text{final state}]$
 - b. Mismatch of transition probabilities of CP-conjugated processes

$$\Gamma(D \to f) \neq \Gamma(\overline{D} \to \overline{f})$$

c. Various asymmetries in decay distributions, etc.

> Depending on the initial and final states, these observables can be affected by all three sources of CP-violation

a. Transitions forbidden w/out CP-violation

τ-charm factory (BES/CLEO-c)

Recall that CP of the states in $D^0 D^0 \rightarrow (F_1)(F_2)$ are anti-correlated at $\psi(3770)$:

▷ a simple signal of CP violation: $\psi(3770) \rightarrow D^0 \overline{D^0} \rightarrow (CP\pm)(CP\pm)$

> CP-violation in the <u>rate</u> \rightarrow of the *second order* in $\lambda_f = \frac{q}{p} \frac{A_f}{A_f}$ CP-violating parameters.

Cleanest measurement of CP-violation!

What if f_1 or f_2 is not a CP-eigenstate

τ-charm factory (BES/CLEO-c)

If CP violation is neglected: mass eigenstates = CP eigenstates
 CP eigenstates do NOT evolve with time, so can be used for "tagging"

b. Mismatch of transition probabilities

> At least two components of the transition amplitude are required

Look at charged D's:
$$A(D^+ \rightarrow f) \equiv A_f = |A_1|e^{i\delta_1}e^{i\phi_1} + |A_2|e^{i\delta_2}e^{i\phi_2}$$

Then, a charge asymmetry will provide a CP-violating observable

$$a_{f} = \frac{\Gamma\left(D^{+} \to f\right) - \Gamma\left(D^{-} \to \overline{f}\right)}{\Gamma\left(D^{+} \to f\right) + \Gamma\left(D^{-} \to \overline{f}\right)} = \frac{2\operatorname{Im} A_{1}A_{2}^{*}\sin\left(\delta_{1} - \delta_{2}\right)}{\left|A_{1}\right|^{2} + \left|A_{2}\right|^{2} + 2\operatorname{Re} A_{1}A_{2}^{*}\cos\left(\delta_{1} - \delta_{2}\right)}$$

...or, introducing $r_f = |A_2/A_1|$: $a_f = 2r_f \sin \phi \sin \delta$

Prediction sensitive to details of hadronic model

> Same formalism applies if one of the amplitudes is generated by New Physics

need $r_f \sim 1$ % for O(1%) charge asymmetry

b. Mismatch of transition probabilities - II

> This can be generalized for neutral D-mesons too:

$$a_{f} = \frac{\Gamma\left(D \to f\right) - \Gamma\left(\overline{D} \to \overline{f}\right)}{\Gamma\left(D \to f\right) + \Gamma\left(\overline{D} \to \overline{f}\right)} \quad \text{ and } \quad a_{\overline{f}} = \frac{\Gamma\left(D \to \overline{f}\right) - \Gamma\left(\overline{D} \to f\right)}{\Gamma\left(D \to \overline{f}\right) + \Gamma\left(\overline{D} \to f\right)}$$

> Each of those asymmetries can be expanded as

$$a_f^d = 2r_f \sin \phi_f \sin \delta_f$$
$$a_f^m = -R_f \frac{y'_f}{2} \left(R_m - R_m^{-1} \right) \cos \phi$$
$$a_f^i = R_f \frac{x'_f}{2} \left(R_m + R_m^{-1} \right) \sin \phi$$

- 1. similar formulas available for f
- 2. for CP-eigenstates: $f=\overline{f}$ and $y_f' \rightarrow y$

Those observables are of the <u>first</u> order in CPV parameters, but require tagging

What to expect?

> Standard Model asymmetries (in 10^{-3}):

Final state	π ⁺η	π ⁺η ΄	K⁺ K ⁰	π*ρ ⁰	π ⁰ ρ+	K*⁺K¯⁰	K⁺ <mark>K*</mark> ⁰
a _f , cos δ > 0	-1.5±0.4	0.04±0.01	1.0±0.3	-2.3±0.6	2.9±0.8	-0.9±0.3	2.8±0.8
a _f , cos δ < 0	-0.7±0.4	0.02±0.01	0.5±0.3	-1.2 <u>+</u> 0.6	1.5±0.8	-0.5±0.3	1.4±0.7

F. Buccella et al, Phys. Lett. B302, 319, 1993

> New Physics (in new tree-level interaction and new loop effects):

Model	r _f	
Extra quarks in vector-like rep	< 10 ⁻³	
RPV SUSY	< 1.5×10 ⁻⁴	0.001 V Grossman
Two-Higgs doublet	< 4×10 ⁻⁴	0.0005 A. Kagan, Y. N 300 400 500 600 700 800 900 1000 A. Kagan, Y. N Phys Rev D 75, 036008 2007

Experimental constraints

> HFAG provides the following averages from BaBar, Belle, CDF, E687, E791, FOCUS, CLEO collaborations

Decay mode	CP asymmetry
$D^0 \rightarrow K^+ K^-$	$+\ 0.0136 \pm 0.012$
$\mathrm{D}^{0} \rightarrow \mathrm{K_{S}}^{0} \mathrm{K_{S}}^{0}$	-0.23 ± 0.19
$D^0 \rightarrow \pi^+ \pi^-$	$+0.0127 \pm 0.0125$
$D^0 \rightarrow \pi \ ^0\pi \ ^0$	$+0.001\pm0.048$
$D^0 \rightarrow \pi^+ \pi^- \pi^0$	$+\ 0.01\pm 0.09$
$D^0 \rightarrow K_S^0 \pi^0$	$+0.001\pm0.013$
$D^0 \rightarrow K^- \pi^+ \pi^0$	-0.031 ± 0.086
$D^0 \rightarrow K^+ \pi^- \pi^0$	-0.001 ± 0.052
$D^0 \rightarrow K_S^{0} \pi^+ \pi^-$	-0.009 ± 0.042
$D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$	-0.018 ± 0.044
$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$	-0.082 ± 0.073

Decay mode	CP asymmetry		
$D^{\scriptscriptstyle +} \mathop{\longrightarrow} K_S{}^0 \pi^{ +}$	-0.016 ± 0.017		
$D^+ \rightarrow K_S^0 K^+$	$+0.071\pm0.062$		
$D^+ \rightarrow K^+ K^- \pi^+$	$+0.007\pm0.008$		
$D^+ \rightarrow \pi^+ \pi^- \pi^+$	-0.017 ± 0.042		
$D^+ \rightarrow K_S^0 K^+ \pi^+ \pi^-$	-0.042 ± 0.068		

Most measurements are at the percent sensitivity

Time-dependent observables

Time dependent $D^0(t) \rightarrow K^+K^-$ (lifetime difference analysis): separate datasets for D^0 and D^0

$$\Delta Y_{KK} = \frac{\Gamma'(D^0 \to K^+ K^-) - \Gamma'(\overline{D^0} \to K^+ K^-)}{\Gamma'(D^0 \to K^+ K^-) + \Gamma'(\overline{D^0} \to K^+ K^-)} = \frac{A_m}{2} y \cos \phi - x \sin \phi$$

$$\Delta Y_{KK} = a_{KK}^m + a_{KK}^i \qquad \qquad \text{universal for all final states} \qquad \begin{array}{c} \text{S. Bergmann,} \\ \text{S. B$$

lir, A.A. Petrov, Phys. Lett. B486, 418 (2000)

This analysis requires

1. time-dependent studies 2. initial flavor tagging ("the D* trick")

BaBar [2003]: $\Delta Y = (-0.8 \pm 0.6 \pm 0.2) \times 10^{-2}$ Belle [2003]: $\Delta Y = (+0.20 \pm 0.63 \pm 0.30) \times 10^{-2}$

World average: $\Delta Y = (-0.35 \pm 0.47) \times 10^{-2}$

Y. Grossman, A. Kagan, Y. Nir, Phys Rev D 75, 036008, 2007

Untagged observables

Look for CPV signals that are

first order in CPV
 do not require flavor tagging

Consider the final states that can be reached by both $\overline{D^0}$ and D^0 , but are <u>not</u> CP eigenstates ($\pi\rho$, KK^{*}, K π , K ρ , ...)

$$A_{CP}^{U}(f,t) = \frac{\Sigma_{f} - \Sigma_{\overline{f}}}{\Sigma_{f} + \Sigma_{\overline{f}}}$$

where

$$\Sigma_{f} = \Gamma \left(D^{0} \to f \right) \left[t \right] + \Gamma \left(\overline{D^{0}} \to f \right) \left[t \right]$$

A.A.P., PRD69, 111901(R), 2004 hep-ph/0403030

CP violation: untagged asymmetries

Expect time-dependent asymmetry...

$$A_{CP}^{U}(f,t) = \frac{1}{D(t)} e^{-\Gamma t} \left[A + B(\Gamma t) + C(\Gamma t)^{2} \right]$$

... and time-integrated asymmetry

$$A_{CP}^{U}(f,t) = \frac{1}{D} \left[A + B + 2C \right]$$

... whose coefficients are computed to be

$$A = |A_{f}|^{2} \left[\left(1 - \left| \overline{A_{f}} \right|^{2} / \left| A_{f} \right|^{2} \right) + R \left(1 - \left| A_{\overline{f}} \right|^{2} / \left| \overline{A}_{f} \right|^{2} \right) \right],$$

$$B = -2 y \sqrt{R} \left[\sin \phi \sin \delta \left(\left| \overline{A}_{f} \right|^{2} + \left| A_{\overline{f}} \right|^{2} \right) - \cos \phi \cos \delta \left(\left| \overline{A}_{f} \right|^{2} - \left| A_{\overline{f}} \right|^{2} \right) \right],$$

$$C = \frac{x^{2}}{2} A.$$

This is true for any final state

CHARM-2007, Ithaca, NY

f

CP violation: untagged asymmetries (K⁺ π^-)

For a particular final state $K\pi$, the time-integrated asymmetry is simple

$$A_{CP}^{U}\left(K^{+}\pi^{-}\right) = -y\sin\delta\sin\phi\sqrt{R}$$

This asymmetry is

- 1. non-zero due to large SU(3) breaking
- 2. contains no model-dependent hadronic
 - parameters (R and δ are experimental observables)
- 3. could be as large as 0.04% for NP

Note: larger by O(100) for SCS decays $(\pi \rho, ...)$ where R ~ 1

A.A.P., PRD69, 111901(R), 2004 hep-ph/0403030

CP-violation in charmed baryons

> Other observables can be constructed for baryons, e.g.

$$A(\Lambda_c \to N\pi) = \overline{u}_N(p,s) [A_S + A_P \gamma_5] u_{\Lambda_c}(p_\Lambda,s_\Lambda)$$

These amplitudes can be related to "asymmetry parameter" c

$$\alpha_{\Lambda_c} = \frac{2 \operatorname{Re}(A_S^* A_P)}{\left|A_S\right|^2 + \left|A_P\right|^2}$$

... which can be extracted from $\frac{dW}{d\cos\vartheta} = \frac{1}{2} \left(1 + P\alpha_{\Lambda_c} \cos\vartheta \right)$

 Λ_c

Same is true for $\Lambda_c\text{-decay}$

If CP is conserved $\alpha_{\Lambda_c} \stackrel{CP}{\Rightarrow} - \stackrel{-}{\alpha}_{\Lambda_c}$, thus CP-violating observable is

$$A_{f} = \frac{\alpha_{\Lambda_{c}} + \overline{\alpha}_{\Lambda_{c}}}{\alpha_{\Lambda_{c}} - \overline{\alpha}_{\Lambda_{c}}}$$

FOCUS[2006]: A_{Δπ}=-0.07±0.19±0.24

Conclusions

> Charm provides great opportunities for New Physics studies

- large available statistics
- small Standard Model background
- > Different observables should be used to disentangle CPviolating contributions to $\Delta c=1$ and $\Delta c=2$ amplitudes
 - time-dependent and time-independent charge asymmetries
 - CP-tagged measurements
- Observation of CP-violation in the current round of experiments provide "smoking gun" signals for New Physics
 - new observables should be considered
 - untagged CP-asymmetries
 - triple-product correlators in D -> VV decays
 - CP-asymmetries in baryon decays

Additional slides

"Static" observables for CP-violation

I. Intrinsic particle properties ✓ electric dipole moments:

$$\vec{d} = \int d^3x \ \vec{x} \rho(\vec{x})$$

should be (anti-)alligned with spin \vec{s} !

Experimental limits:

Particle	Exp Limit, e cm	Theory (SM), e cm
neutron	$ d_n < 6.3 \times 10^{-26}$	$ d_n \sim 10^{-32}$
electron	$ d_e < 4 \times 10^{-27}$	$ d_{ m e} \sim 10^{-37}$
muon	$ d_{\mu} < 7 \ imes \ 10^{-19}$	$ d_\mu \sim 10^{-35}$

$$\begin{array}{cccccccc} \vec{d} \stackrel{\mathcal{T}}{\to} & \vec{d} & || & \vec{s} \stackrel{\mathcal{T}}{\to} -\vec{s} \\ & & & \\ & & & \\ \hline \vec{d} \stackrel{\mathcal{P}}{\to} -\vec{d} & || & \vec{s} \stackrel{\mathcal{P}}{\to} & \vec{s} \end{array}$$

thus, if $\vec{d} \neq 0 \Rightarrow \mathcal{T}$ or \mathcal{CP} is broken

Low energy strong interaction effects might complicate predictions!