
Charm Mixing - Theory [CP-Conserving only]

Gene Golowich Univ. of Massachusetts

> CHARM-07 Cornell University 5-8 August 2007

Our Thoughts on y_D and x_D

This talk will refer to: 1] y_D : PRL 98 (2007) 181808-1

New Physics contributions to the lifetime difference in D^0 - \overline{D}^0 mixing

Eugene Golowich,¹ Sandip Pakvasa,² and Alexey A. Petrov^{3,4}

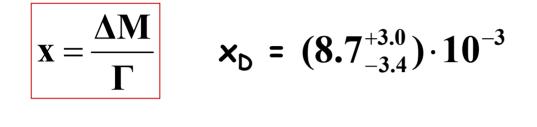
²Department of Physics, University of Massachutetts, Amherst, MA 61065 ^aDepartment of Physics and Astronomy, University of Hassail at Manoa, Honolulu, HI 96888 ^aDepartment of Physics and Astronomy, Wayne State University, Detroit, MI 48803 ^aHickigan Center for Theoretical Physics, University of Michigan, Ann Arbor, MI 48103

2] ×_D: arXiv:0705.3650 [hep-ph]

Implications of D^0 - \overline{D}^0 Mixing for New Physics

Eugene Golowich,¹ JoAnne Hewett,² Sandip Pakvasa,² and Alexey A. Petrov⁴.

⁴Department of Physics, University of Massachusetts Amherst, MA 01003

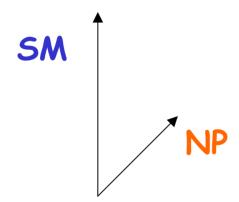

*Stanford Linear Accelerator Center, Stanford University Stanford, CA 94309

> ³Department of Physics and Astronomy , University of Hawaii, Honolulu, HI 96822

> ⁴ Department of Physics and Astronomy Wayne State University, Detroit, MI 48201

Status of D⁰ Mixing

At the time of our paper on x_D :


$$y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$
 $y_D = (6.6 \pm 2.1) \cdot 10^{-3}$

The above x_D is a 2.4 σ effect.
PRL discovery criteria are:
a) 'Observation': >5σ
b) 'Evidence': 3σ-to-5σ
c) 'Measurement': <3σ

Basic Strategy for x_D

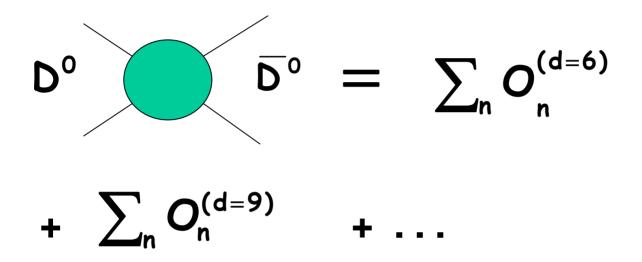
Observed Signal at roughly 1% level. To some, this is 'large' for SM. Or is it?

Our premise is to study both SM, NP. We do not know the relative phase.

So we compare pure NP signals to values X_D = (3.0 \rightarrow 15.0) \cdot 10⁻³

Standard Model

Quark-level Analysis


Operator Product Expansion QCD Perturbation Theory Expansion in m_s/m_c Evaluation of B-parameters

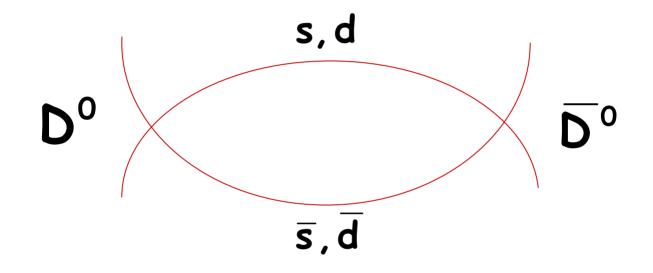
Hadron-level Analysis

Focus on y_D Direct Involvement of Data/Models Role of SU(3) Breaking Possible Large Effect

Charm Mixing and the OPE*

Expand in increasing operator dimension:

D=6: Two local 4F operators


D=9: Fifteen local 6F operators

Etc

*[Georgi PL B297 (1992) 353]

Dimension Six

Ignore b quark. Sum over $s\overline{s}, d\overline{d}, s\overline{d} + d\overline{s}$ intermediate states.

Expand in powers of

$$z = \frac{m_s^2}{m_c^2} \cong 0.006$$

- $\Delta\Gamma$ at d=6 (m_d=0):
- $z^{0} z^{1} z^{2}$ $s\overline{s} \frac{1}{2}$ $d\overline{d}$

 $s\overline{d} + d\overline{s}$

Total

 $\Delta\Gamma$ at d=6 (m_d=0):

	z ⁰	z ¹	z ²
รร	1 2		
dd	1 2		

 $s\overline{d} + d\overline{s}$

Total

$\Delta\Gamma$ at d=6 (m_d=0):

	z ⁰	z ¹	z ²
รริ	<u>1</u> 2		
dd	<u>1</u> 2		
$s\overline{d} + d\overline{s}$	-1		
Total	0		

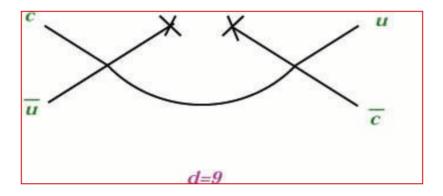
$\Delta\Gamma$ at d=6 (m_d=0):

	z ⁰	z ¹	z ²
SS	<u>1</u> 2	-3z	
dd	<u>1</u> 2	0	
$s\overline{d} + d\overline{s}$	-1	3z	
Total	0	0	

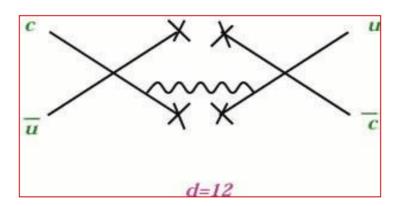
$\Delta\Gamma$ at d=6 (m_d=0):

	z ⁰	Z ¹	z ²
รร	<u>1</u> 2	-3z	3z ²
dd	$\frac{1}{2}$	0	0
$s\overline{d} + d\overline{s}$	-1	3z	-3z ²
Total	0	0	0

Allowing for QCD*


Expand in α_s : $x \qquad y \qquad Comment$ $\alpha_s^0 (LO) \qquad z^2 \qquad z^3 \qquad x^{(LO)} > y^{(LO)}$ $\alpha_s^1 (NLO) \qquad z^2 \qquad z^2 \qquad x^{(NLO)} > y^{(NLO)}$

Main LO + NLO Result: $x \cong y \approx 10^{-6}$ (And find NLO > LO)


*EG & Petrov PLB 625 (2005) 53

Higher Terms in the OPE*

 $D = 9 (\propto z^{3/2})$

 $D = 12 (\infty z)$

*[Ohl, Ricciardi & Simmons NP B403 (1993) 605]

Quark-Level Summary

Triple Expansion:

- 1. Operator dimensions d = 6, 9, 12, ...
- 2. QCD factors $\alpha_s/4\pi$
- 3. Mass ratio $z = (m_s/m_c)^2$

Status:

- 1. Scale thus far << 1%
- 2. Scale if all terms included, unknown.

Keep trying! Bigi & Uraltsev, NP B592 (2001) 92 Gagik, Golowich, Petrov (in progress)

Hadron-level ($\Delta\Gamma$)

$$y_{D} = \frac{1}{2M_{D}\Gamma_{D}} \operatorname{Im} < \overline{D}^{0} | i \int d^{4}x \ \top (H_{w}(x)H_{w}(0)) | D^{0} >$$

Insert hadronic int. states: $\sum_{n} |n| > < n |$

Require matrix elements $< n | H_w | D^0 >$

 Use a model: y_D ~ 10⁻³ Naples Group, PRD 51 (1995) 3478

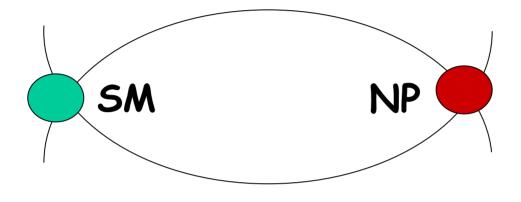
2. Use data

(a) Early Work [UMass PRD 33 (1985) 178]
 Choose n = P+P SU(3) Limit: Zero via cancellation
 SU(3) breaking important?
 Preliminary finding: 'y_D large'

(b) Recent Work [FGLNP PRD 69 (2004) 114021]

Theorem: SU(3) breaking 2^{nd} order So maybe SU(3) breaking not large But 4P sector cannot cancel. Conclude 'y_D ~ 10^{-2} possible' Quite possibly correct. More persuasive than compelling Uncontrollable uncertainties,

New Physics in D^o Mixing


YD

Intermediate states on-shell. Thus only light particles propagate. Can there be any NP effects? Derive a 'master formula'.

×D

Intermediate states off-shell. Many possible NP candidates. Which one to consider? How to organize?

New Physics and $\Delta\Gamma$

NP can affect $\Delta\Gamma!$ Via the $\Delta C = \pm 1$ interaction vertex. Processes like $C\overline{u} \rightarrow q_1\overline{q}_2$

Golowich, Pakvasa, Petrov, PRL 98 (2007) 181801. [Comment]: Chen, Geng, Nam, PRL 99 (2007) 019101. [Comment²]: Yeghiyan, arXiv 0707.3285 [hep-ph].

The Master Formula

INPUT

$$\mathbf{H}_{NP}^{\Delta C=-1} = \sum_{q,q'} \mathbf{D}_{qq'} \left[\overline{\mathcal{C}}_1(\mu) \mathbf{Q}_1 + \overline{\mathcal{C}}_2(\mu) \mathbf{Q}_2 \right]$$

 $\mathbf{Q}_1 = \overline{u}_i \overline{\Gamma}_1 q'_j \ \overline{q}_j \overline{\Gamma}_2 c_i \quad \mathbf{Q}_2 = \overline{u}_i \overline{\Gamma}_1 q'_i \ \overline{q}_j \overline{\Gamma}_2 c_j$

OUTPUT

$$\mathbf{y}_{\mathrm{D}} = -\frac{4\sqrt{2}G_F}{M_{\mathrm{D}}\Gamma_{\mathrm{D}}} \sum_{q,q'} \mathbf{V}_{cq'}^* \mathbf{V}_{uq} \mathbf{D}_{qq'} (\mathbf{K}_1 \delta_{ik} \delta_{j\ell} + \mathbf{K}_2 \delta_{i\ell} \delta_{jk}) \sum_{\alpha=1}^5 \mathbf{I}_{\alpha}(x, x') \langle \overline{D}^0 | \mathbf{O}_{\alpha}^{ijk\ell} | D^0 \rangle$$

Some Results for y_D

Model	У _D	Comment
RPV-SUSY	6 10-6	Squark Exch.
	-4 10-2	Slepton Exch.
Left-right	-5 10-6	'Manifest'.
Len-fight	-8.8 10-5	'Nonmanifest'.
Multi-Higgs	2 10-10	Charged Higgs
Extra Quarks-	10-8	Not Little Higgs

New Physics and x_D

As the LHC era begins, many extras possible (21 models in GHPP)*

- Extra gauge bosons (LR models, etc)
- Extra scalars

(Multi-Higgs models, etc)

• Extra fermions

(Little Higgs, etc)

Extra dimensions

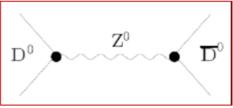
(Universal extra dimensions, etc)

 Extra global symmetries (SUSY, etc)

*GHPP: arXiv 0705.3650 [hep-ph]

List of NP Models

Fourth Generation Q=-1/3 Singlet Quark Q=+2/3 Singlet Quark Little Higgs Generic Z' **Family Symmetries** Left-Right Symmetries Alternate L-R Symmetries Vector Leptoquark Bosons Fl-Cons Two-Higgs Dblt Fl-Chnge Neutral Higgs I Fl-Chnge Neutral Higgs II Scalar Leptoquark Bosons Higgless Universal Extra Dims Split Fermion Warped Geometries Minimal SUSY Standard SUSY Alignment SUSY with RPV Split SUSY


Challenge to the Audience*

Of the 21 NP models, how many turn out to yield contributions too small for D⁰ mixing at the observed 10⁻² level?

Comment: Note many NP models have been on the market for years (e.g., SUSY has been studied for over 30 yrs) and their parameter spaces have been steadily constrained.

If you have already seen the paper, please keep quiet.

A NP Example

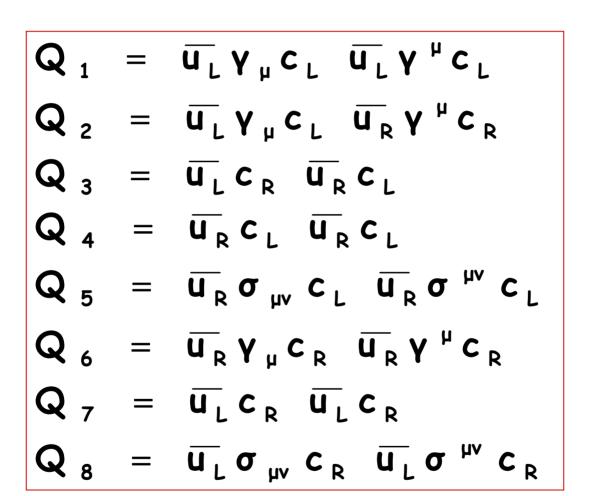


Diagram Z⁰ tree amplitude Two flavor-changing vertices

Realizations: Vector-like SU(2)-singlet quarks E(6): Q = -e/3 Little Higgs: Q = 2e/3

$$\label{eq:Find} \begin{array}{ll} \textbf{x}_{\text{D}} & = \frac{G_{F}\lambda_{uc}^{2}}{\sqrt{2}M_{D}\Gamma_{D}}\textbf{\textit{C}}_{1}(\textbf{m}_{\text{c}}) < \overline{D}^{0} \mid Q_{1} \mid D^{0} > \end{array}$$

Operator Basis

Operator Matrix Elements

In vacuum saturation, just two nonperturbative constants (B,B'_s)

$$\langle \mathbf{Q}_{1} \rangle = \frac{2}{3} \mathbf{f}_{D}^{2} \mathbf{M}_{D}^{2} \mathbf{B}$$

$$\langle \mathbf{Q}_{2} \rangle = -\frac{1}{2} \mathbf{f}_{D}^{2} \mathbf{M}_{D}^{2} \mathbf{B} - \frac{1}{3} \mathbf{f}_{D}^{2} \mathbf{M}_{D}^{2} \mathbf{B}_{S}^{'}$$

$$\langle \mathbf{Q}_{3} \rangle = \frac{1}{12} \mathbf{f}_{D}^{2} \mathbf{M}_{D}^{2} \mathbf{B} + \frac{1}{2} \mathbf{f}_{D}^{2} \mathbf{M}_{D}^{2} \mathbf{B}_{S}^{'}$$

$$\langle \mathbf{Q}_{4} \rangle = -\frac{5}{12} \mathbf{f}_{D}^{2} \mathbf{M}_{D}^{2} \mathbf{B}_{S}^{'}$$

$$\langle \mathbf{Q}_{5} \rangle = \mathbf{f}_{D}^{2} \mathbf{M}_{D}^{2} \mathbf{B}_{S}^{'}$$

$$\langle \mathbf{Q}_{6} \rangle = \langle \mathbf{Q}_{1} \rangle$$

$$\langle \mathbf{Q}_{8} \rangle = \langle \mathbf{Q}_{5} \rangle$$

RG Factor

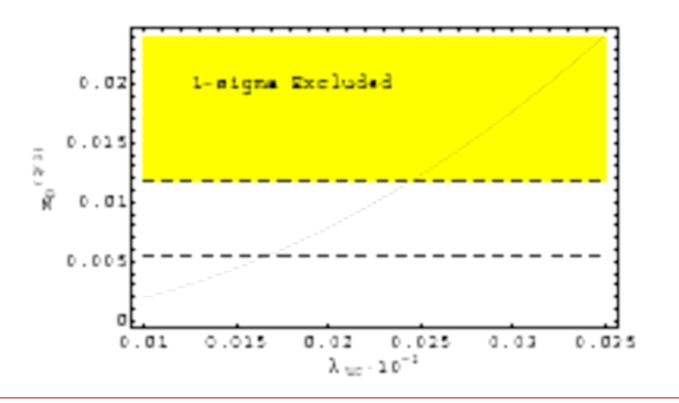
EX:
$$\mathbf{Q}_6 = \overline{\mathbf{u}}_R \mathbf{\gamma}^{\mu} \mathbf{c}_R \overline{\mathbf{u}}_R \mathbf{\gamma}_{\mu} \mathbf{c}_R$$

Two scales: M >>m_c

Have $C_6(M)$ Need $C_6(m_c)$

Integrate RG equation

Obtain
$$C_6(m_c) = R[M, m_c]C_6(M)$$


with

 $R[M,m_c] = r^{2/7}(M,m_t)r^{6/23}(m_t,m_b)r^{6/25}(m_b,m_c)$

 $r(m_1, m_2) = a_s(m_1)/a_s(m_2)$

Limit on Q=2/3 Quark Singlet

Plot $x_{D}^{(2/3)}$ vs λ_{uc} :

D⁰-mixing limit on λ_{uc} is about 10² better than that from 4x4 CKM unitarity.

Answer to Challenge

Ineffective Models:

Four yield no constraints:

- 1. Split supersymmetry
- 2. Universal Extra Dimensions
- 3. Left-right symmetric
- 4. FC two-Higgs doublet

Constrainable Models:

There are 17 which can, in principle, exceed the observed x_D . For these, we can get constraints on masses and mixing parameters.

Split SUSY - Why So Small?

What 'is' Split SUSY?:

- New variant of SUSY (2003-4)
- SUSY breaks at m_s >> 1000 TeV
- Scalars (except Higgs) have mass ~ m_s
- Fermions have usual weak scale mass

Why So Small in D^o Mixing?:

Large D⁰ mixing in SUSY involves squark (i.e.scalar quarks) amplitudes. But squark masses are huge in Split SUSY. Thus the mixing is suppressed.

UEDs - Why So Small?

What 'are' Universal Extra Dimensions?

- Variant (2000) of having TeV⁻¹-sized extra dimensions
- No branes in this approach
- All SM fields reside in the bulk
- Usually one extra dimension

Why So Small in D^o Mixing?:

Each SM field has an infinity of KK excitations. GIM cancellations affect all save a few b-quark KK terms, but these are CKM suppressed.

Results of x_D Analysis

Fourth Generation Q=-1/3 Singlet Quark Q=+2/3 Singlet Quark Little Higgs

Generic Z' Family Symmetries Left-Right Symmetries Alternate L-R Symmetries

Vector Leptoquark Bosons Fl-Cons Two-Higgs Doublet Fl- Change Neutral Higgs I Fl-Change Neutral Higgs II Scalar Leptoquark Bosons Higgless Universal Extra Dimensions Split Fermion Warped Geometries Minimal SUSY Standard

SUSY Alignment SUSY with RPV Split SUSY

 $|V_{ub}, V_{cb}| m_{b} < 0.5 \text{ GeV}$ $s_2 m_s < 0.27 \text{ GeV}$ $|\lambda_{\rm uc}| < 2.4 \ 10^{-4}$ Tree: Same as Q=-1/3 Singlet Qk Box: Can reach observed xD $M_{Z'}/C > 2.2 \ 10^3 \ TeV$ $m_1/f > 1.2 \ 10^3 \ TeV$ No Constraint $M_{R} > 1.2 \text{ TeV} (m_{D1} = 0.5 \text{ TeV})$ $(\Delta m/m_{D1})/M_R > 0.4 \text{ TeV}^{-1}$ $M_{VLO} > 55 \; (\lambda_{PP}/0.1) \; TeV$ No Constraint $m_{\rm H}/C > 2.4 \ 10^3 \ {\rm TeV}$ $m_{\rm H}/|\Delta_{\rm uc}| > 600 {\rm ~GeV}$ See RPV SUSY M > 100 TeVNo Constraint $M/\Delta y > 600 \text{ GeV}$ $M_1 > 3.5 \text{ TeV}$ $|(\delta^{u}_{12})_{LR,LR}| < 0.035$ $|(\delta^{u}_{12})_{LL.RR}| < 0.25$ M > 2 TeV $\lambda'_{12k}\lambda'_{11k}/m < 1.8 \ 10^{-4}/100 \ GeV$ No Constraint

Concluding Remarks

Experiment:

 x_{D} and y_{D} signals at 1% level. Great! But more sensitivity desired. Ultimately attain PRL criterion?

SM Theory:

Quarks:

To date, find $x_D \cong y_D \cong 10^{-6}$ Tiny! But triple expansion not rapidly convergent.

Hadrons:

Might be that x_D , $y_D \sim 10^{-2}$ (!) but hadronic physics messy as always.

NP Theory:

We have found which NP models can yield sizable x_D and y_D and which cannot. Charm mixing data yield useful constraints. A most welcome addition to the NP community!