D and D_s hadronic branching fractions at B factories

Marco Pappagallo

University of Bari & INFN On behalf of BaBar Collaboration

Charm07, Cornell University, Ithaca, New York, August 5-8, 2007

Outline

- $D^0 \rightarrow K^- \pi^+ BR$ arXiv:0704.2080 (Submitted to Phys.Rev.Lett.)
- $D_s^+ \rightarrow K^+ K^- \pi^+ BR$ hep-ex/0701053 • $D^0 \rightarrow K^+ K^- \pi^0$ and $D^0 \rightarrow \pi^+ \pi^- \pi^0 BR's$ Phys.Rev.D74:091102,2006 hep-ex/0610062
- Amplitude Analysis of D and D_s decay:

Preliminary

Absolute Branching Fraction of $D^0 \rightarrow K^- \pi^+$

Motivation:

• Need to normalize other $\mathcal{B}(D)$: (semi)leptonic for $V_{cb'}$ f_D measurements

 $0 \rightarrow K^{-}\pi^{+})$

Step 1

 $^{0} \rightarrow K^{-}\pi^{+})$

Absolute Branching Fraction of $D_s^+ \rightarrow K^+K^- \pi^+$

Motivation:

- Normalization of many decays involving a D_s^+ in the final state
- It is a systematic limitation for some precise measurements: CP violation in B⁰ \rightarrow D^{(*)±} π^{\mp} decays

$$M_{\text{recoil}}(X) = \sqrt{(\sqrt{s} - E_X)^2 - P_X^2}$$

$$\mathcal{B}(D_s^+ \rightarrow K^+ K^- \pi^+) = (4.1 \pm 0.4 \pm 0.4)\%$$
CLEO: $\mathcal{B}(D_s \rightarrow KK\pi) = (5.57 \pm 0.30 \pm 0.19)\%$
Belle results are preliminary
$$PDG \ 04: \ \mathcal{B}(D_s \rightarrow KK\pi) = (4.4 \pm 1.2)\%$$

PDG 04: $\mathcal{B}(D_s \rightarrow KK\pi) = (4.4 \pm 1.2)\%$

Preliminary

$D^0 \rightarrow K^+ K^- \pi^0$ and $D^0 \rightarrow \pi^+ \pi^- \pi^0$ Relative Branching Fraction

Motivation:

• Precision measurement of the branching ratio of 3-body Cabibbo suppressed decays of D⁰

• To investigate the anomaly in the branching ratio of 2- and 3-body CS decays of D⁰

 $D^0 \rightarrow K^+ K^- \pi^0, \pi^+ \pi^- \pi^0$

 $\Delta \mathbf{m} = \mathbf{m}(\mathbf{D}^0 \boldsymbol{\pi}_{\mathbf{s}}^{+}) \cdot \mathbf{m}(\mathbf{D}^0)$

Charm07, Ithaca, NY August 5-8, 2007

 $D^0 \rightarrow K^+ K^- \pi^0, \pi^+ \pi^- \pi^0$

 $D^0 \rightarrow K^+ K^- \pi^0, \pi^+ \pi^- \pi^0$

Naive picture: CS/CF decays

Suppression is an effect of Cabibbo

suppression at the quark level

The decay rate for each mode:

 $\Gamma = |\mathsf{M}^2|\Phi$

where:

M = Decay Matrix Element

 Φ = Phase Space factor

Using 2-body B.R. values from PDG: $|M^2|(\pi^-\pi^+)/|M^2|(K^-\pi^+) = 0.034 \pm 0.001$ $|M^2|(K^-K^+)/|M^2|(K^-\pi^+) = 0.111 \pm 0.002$ $|M^2|(K^-K^+)/|M^2|(\pi^-\pi^+) = 3.53 \pm 0.12$

~0.05 Very different ~0.05 from naive expectations ~1.

Using the previous 3-body B.R. values:	
$ \mathbf{M}^2 (\pi^*\pi^+\pi^0)/ \mathbf{M}^2 (\mathbf{K}^*\pi^+\pi^0) = \begin{cases} 0.0668 \pm 0.0004 \pm 0.0008 \text{ (BaBar)} \\ 0.0613 \pm 0.0006 \pm 0.0019 \text{ (Belle)} \end{cases}$	Rougly consistent with naive expectations, i.e.
$ \mathbf{M}^2 (\mathbf{K}^+\mathbf{K}^+\pi^0)/ \mathbf{M}^2 (\mathbf{K}^+\pi^+\pi^0) = 0.0453 \pm 0.0006 \pm 0.0008(BaBar)$	$\int \sin^2 \Theta_c \sim 0.05$
$ M^2 (K K^+ \pi^0)/ M^2 (\pi^- \pi^+ \pi^0) = 0.678 \pm 0.014 \pm 0.021(BaBar)$	

Amplitude Analysis of D and D_s decays

Isobar model formalism

D⁰ three-body decay D⁰ \rightarrow ABC decaying through an r=[AB] resonance

Preliminary

$D_s^+ \rightarrow K^+K^-\pi^+$ Dalitz Plot Analysis

Motivation:

• Using Dalitz plot results, we make a precise measurement of the branching ratios of the decays $D_s^+ \rightarrow \phi \pi^+$ and $D_s^+ \rightarrow \overline{K}(892)^0 K^+$ integrated over the whole phase-space

• The $D_s^+ \rightarrow \phi \pi^+$ is frequently used as the D_s^+ reference decay mode for measurement of branching ratios.

 \bullet The previous analysis(E687) of this Dalitz plot was performed with ${\sim}700$ events

 $D_s^+ \rightarrow K^+ K^- \pi^+$

	BaB	ar Preliminary		
Decay Mode	Decay fraction(%)	Amplitude	Phase(radians)	
$\bar{K}^{*}(892)^{0}K^{+}$	$48.7 \pm 0.2 \pm 1.6$	1.(Fixed)	0.(Fixed)	> Decay dominated
$\phi(1020)\pi^{+}$	$37.9 \pm 0.2 \pm 1.8$	$1.081 \pm 0.006 \pm 0.049$	$2.56 \pm 0.02 \pm 0.38$	by P wave
$f_0(980)\pi^+$	$35 \pm 1 \pm 14$	$4.6 \pm 0.1 \pm 1.6$	$-1.04 \pm 0.04 \pm 0.48$	by F wave
$K_0^*(1430)^0 K^+$	$2.0 \pm 0.2 \pm 3.3$	$1.07 \pm 0.06 \pm 0.73$	$-1.37 \pm 0.05 \pm 0.81$	> f _o (980) contribution
$f_0(1710)\pi^+$	$2.0 \pm 0.1 \pm 1.0$	$0.83 \pm 0.02 \pm 0.18$	$-2.11 \pm 0.05 \pm 0.42$	is large but big syst
$f_0(1370)\pi^+$	$6.3 \pm 0.6 \pm 4.8$	$1.74 \pm 0.09 \pm 1.05$	$-2.6 \pm 0.1 \pm 1.1$	uncertainces
$K_{2}^{*}(1430)^{\circ}K^{+}$	$0.17 \pm 0.05 \pm 0.3$	$0.43 \pm 0.05 \pm 0.34$	$-2.5 \pm 0.1 \pm 0.3$	uncertainces
$f_2(1270)\pi^+$	$0.18 \pm 0.03 \pm 0.4$	$0.40 \pm 0.04 \pm 0.35$	$0.3 \pm 0.2 \pm 0.5$	
$\frac{3}{\sqrt{2}}$	$132 \pm 1.2 \pm 15.0$			
$\begin{array}{c} 25000 \\ 25000 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$	000 000 000 000 0 1. 1.05 020) 2 3 K ⁺ K ⁻) (GeV ² /c ⁴)	$ \begin{array}{c} 8000 \\ 6000 \\ 6000 \\ 4000 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$ABAR relim. $ $5 2 eV^{2/c^{4}}$ $4000 4000 2000 1000 0 0 0 0 0 0 0 0 0 $	$0.5 \ 1 \ 1.5 \ 2 \ m^2(K^+\pi^+) \ (GeV^2/c^4)$

Charm07, Ithaca, NY August 5-8, 2007

Marco Pappagallo

 $D_{S}^{+} \rightarrow K^{+}K^{-}\pi^{+}$

$D^0 \rightarrow K^+K^- \pi^0 DP$ analysis

Motivation:

- Critical for CKM angle γ extraction in B decay: ADS method

• What is the nature of $K\pi$ S-wave below 1.4 GeV? Is there a charged κ (800)?

 $D^0 \rightarrow K^+ K^- \pi^0$

 $D^0 \rightarrow K^+ K^- \pi^0$

State	Amplitude, a_r	Model I Phase, ϕ_r (°)	Fraction, f_r (%)
$K^{*}(892)^{+}$	1.0 (fixed)	0.0 (fixed)	$45.2 \pm 0.8 \pm 0.6$
$K^{*}(1410)^{+}$	$2.29 \pm 0.37 \pm 0.20$	$86.7 \pm 12.0 \pm 9.6$	$3.7 \pm 1.1 \pm 1.1$
$K^{+}\pi^{0}(S)$	$1.76 \pm 0.36 \pm 0.18$	$-179.8 \pm 21.3 \pm 12.3$	$16.3 \pm 3.4 \pm 2.1$
$\phi(1020)$	$0.69 \pm 0.01 \pm 0.02$	$-20.7 \pm 13.6 \pm 9.3$	$19.3 \pm 0.6 \pm 0.4$
$f_0(980)$	$0.51 \pm 0.07 \pm 0.04$	$-177.5 \pm 13.7 \pm 8.6$	$6.7 \pm 1.4 \pm 1.2$
$[a_0(980)^0]$	$[0.48 \pm 0.08 \pm 0.04]$	$[-154.0 \pm 14.1 \pm 8.6]$	$[6.0 \pm 1.8 \pm 1.2]$
$f_{2}^{\prime}(1525)$	$1.11 \pm 0.38 \pm 0.28$	$-18.7 \pm 19.3 \pm 13.6$	$0.08 \pm 0.04 \pm 0.05$
$K^{*}(892)^{-}$	$0.601 \pm 0.011 \pm 0.011$	$-37.0 \pm 1.9 \pm 2.2$	$16.0 \pm 0.8 \pm 0.6$
$K^{*}(1410)^{-}$	$2.63 \pm 0.51 \pm 0.47$	$-172.0 \pm 6.6 \pm 6.2$	$4.8 \pm 1.8 \pm 1.2$
$K^-\pi^0(S)$	$0.70 \pm 0.27 \pm 0.24$	$133.2 \pm 22.5 \pm 25.2$	$2.7\pm1.4\pm0.8$

LASS parametrization for Kpi S-wave

Kpi S-wave from E791 as systematic

>Model with charged $\kappa(800)$ not favoured by data

m=870± 30 MeV/c²

 Γ =150 ± 20 MeV/c²

Marco Pappagallo

 $D^0 \rightarrow K^+ K^- \pi^0$

Strong Phase Measurement	BaBar	Cleo-c
$r_{D}e^{i\delta_{D}} = \frac{a_{D^{0} \to K^{*-}K^{+}}}{a_{D^{0} \to K^{*+}K^{-}}}e^{i(\delta_{K^{*-}K^{+}} - \delta_{K^{*+}K^{-}})}$	$\begin{split} r_{D} &= 0.599 \pm 0.013 \pm 0.011 \\ \delta_{D} &= -35.5^{\circ} \pm 1.9^{\circ} \pm 2.2^{\circ} \end{split}$	$\begin{array}{l} r_{D} = 0.52 \pm 0.05 \pm 0.04 \\ \delta_{D} = -28^{\circ} \pm 8^{\circ} \pm 11^{\circ} \end{array}$

Partial Wave Analysis in K+K-

Preliminary

$$D^0 \rightarrow K_S^0 \pi^+ \pi^- DP$$
 analysis

Motivation:

- CKM angle γ extraction in B decay
- D⁰-D⁰ Mixing

 $D^0 \rightarrow K_s^0 \pi^+ \pi^-$

	3						
(c4	534K 534K	- <u>A</u>		Resonance	Amplitude	Phase (deg)	Fit fraction
$<^2$				$K^{*}(892)^{-}$	1.629 ± 0.005	134.3 ± 0.3	0.6227
G	_[🖉 7500	F A A	ľτ.	$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.5	0.0724
+ (- S	H 1 X - #H		$K_2^*(1430)^-$	0.87 ± 0.01	-47.3 ± 0.7	0.0133
Ε	Q 5000	$F_{\star} = Y = F H$		$K^*(1410)^-$	0.65 ± 0.02	111 ± 2	0.0048
	t st	$ \{N_{L}, \Lambda_{L}, I_{L}, I_{L}\} $		$K^*(1680)^-$	0.60 ± 0.05	147 ± 5	0.0002
	¹ 9 ²⁵⁰⁰			$K^{*}(892)^{+}$	0.152 ± 0.003	-37.5 ± 1.1	0.0054
	Ш.		$\boldsymbol{\mathcal{N}}$	$K_0^*(1430)^+$	0.541 ± 0.013	91.8 ± 1.5	0.0047
	1 2 3 0	1 2 3	\mathbf{O}	$K_2^*(1430)^+$	0.276 ± 0.010	-106 ± 3	0.0013
	m² (GeV²/c⁴)	m ₊ ² (GeV ² /c ⁴)	Ω	$K^*(1410)^+$	0.333 ± 0.016	-102 ± 2	0.0013
C4	د • ا			$K^*(1680)^+$	0.73 ± 0.10	103 ± 6	0.0004
۲ ² /	K*(892)	ρ(//υ)		$\rho(770)$	1 (fixed)	0 (fixed)	0.2111
9 ⁴⁰⁰	00 - <u></u> ⁰⁰ - <u></u>	ti 4 At		$\omega(782)$	0.0380 ± 0.0006	115.1 ± 0.9	0.0063
20				$f_0(980)$	0.380 ± 0.002	-147.1 ± 0.9	0.0452
0.0	0.0			$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4	0.0162
on 200	00 - 1 - 00 5000			$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.1	0.0180
eut				$\rho(1450)$	0.72 ± 0.02	40.9 ± 1.9	0.0024
Ř		(† V - {)		σ_1	1.387 ± 0.018	-147 ± 1	0.0914
_	° [_ °]	0 05 1 15 2	, ,	σ_2	0.267 ± 0.009	-157 ± 3	0.0088
	m ² (GeV ² /c ⁴)	m^{2} (GeV ² /c ⁴)		NR	2.36 ± 0.05	155 ± 2	0.0615
		$m_{\pi\pi}$ (000 / 0)					

Dalitz model: 18 **resonances** + non-resonant

	Mass(MeV/c ²)	Width(MeV/c ²)
σ ₁	519±6	454±12
σ2	1050±8	101±7

$D^0 \rightarrow K_s^0 \pi^+ \pi^-$ (Isobar Model)

$\frac{1}{2} \int_{-\infty}^{\infty} \frac{390 \text{K}}{10^{2} \text{GeV}^{2}/\text{C}^{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{(62^{2}/\text{C})^{2}}} \int_{-\infty}^{\infty$	\widehat{a} a) $B_A B_A R$	b) <mark>1/*(002)-</mark>	Isobar	model resonar	ices + Non res	sonant term
$ \begin{array}{c} \mathbf{F} \\ \mathbf$		K (892)	Component	$Re\{a_r e^{i\phi_r}\}$	$Im\{a_re^{i\phi_r}\}$	Fit fraction (%)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E 20000-	-	$K^{*}(892)^{-}$	-1.223 ± 0.011	1.3461 ± 0.0096	58.1
$ \begin{array}{c c c c c c c c c} & & & & & & & & & & & & & & & & & & &$		ļ Į	$K_0^*(1430)^-$	-1.698 ± 0.022	-0.576 ± 0.024	6.7
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$			$K_2^*(1430)^-$	-0.834 ± 0.021	0.931 ± 0.022	3.6
$ \begin{array}{c} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	m²̃ (GeV²/c⁴)	m ₊ ² (GeV ² /c ⁴)	$K^{*}(1410)^{-}$	-0.248 ± 0.038	-0.108 ± 0.031	0.1
$\frac{1}{4000} = \frac{1}{4000} = 1$		(770)	$K^{*}(1680)^{-}$	-1.285 ± 0.014	0.205 ± 0.013	0.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$K^*(892)^+$ DCS	0.0997 ± 0.0036	-0.1271 ± 0.0034	0.5
$\frac{K_{2}^{*}(1430)^{+}\text{DCS}}{\rho(770)} = 0.019 \pm 0.017 \qquad 0.177 \pm 0.018 \qquad 0.1$			$K_0^*(1430)^+$ DCS	-0.027 ± 0.016	-0.076 ± 0.017	0.0
$\rho(770)$ 1 0 21.6			$K_2^*(1430)^+$ DCS	0.019 ± 0.017	0.177 ± 0.018	0.1
	2000-1 2 2000-1 -		$\rho(770)$	1	0	21.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0^{-1} 2^{-2} $(0^{-1})^{2}$	0.5 1 1.5 2	$\omega(782)$	-0.02194 ± 0.00099	0.03942 ± 0.00066	0.7
$f_2(1270)$ -0.699 ± 0.018 0.387 ± 0.018 2.1	m₂ (Gev ⁻ /c ⁻)	m _{π+π-} (Gev /C)	$f_2(1270)$	-0.699 ± 0.018	0.387 ± 0.018	2.1
Fit requires two additional BW amplitudes but $\rho(1450)$ 0.253 ± 0.038 0.036 ± 0.055 0.1	it requires two additional E	3W amplitudes but	$\rho(1450)$	0.253 ± 0.038	0.036 ± 0.055	0.1
Mass(MeV/c ²) Width(MeV/c ²) Non-resonant -0.99 ± 0.19 3.82 ± 0.13 8.5	Mass(MeV/c ²)	Width(MeV/c²)	Non-resonant	-0.99 ± 0.19	3.82 ± 0.13	8.5
$f_0(980) \qquad 0.4465 \pm 0.0057 \qquad 0.2572 \pm 0.0081 \qquad 6.4$			$f_0(980)$	0.4465 ± 0.0057	0.2572 ± 0.0081	6.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>σ 490±6</u>	406±11	$f_0(1370)$	0.95 ± 0.11	-1.619 ± 0.011	2.0
σ' 1024±4 89±7 $ σ $ 1.28±0.02 0.273±0.024 7.6	σ' 1024±4	89±7	σ	1.28 ± 0.02	0.273 ± 0.024	7.6
in this analysis the Dalitz amplitude is only $\frac{\sigma'}{\sigma'}$ $0.290 \pm 0.010 -0.0655 \pm 0.0098 0.9$	in this analysis the Dali	tz amplituda is anku	σ'	0.290 ± 0.010	-0.0655 ± 0.0098	0.9

Total fit fraction = 119.5%

 γ systematic errors include a fit without σ 's

a means to extract the CP parameters

K-Matrix Model in $\pi\pi$ *S*-wave

K-Matrix formalism overcomes the main limitation of the BW model to parameterize large and overlapping *S*-wave $\pi\pi$ resonances.

 $D^0 \rightarrow \overline{K}{}^0\pi^+\pi^-$ amplitude

5 channels: **1**=ππ **2**=KK **3**=multi-meson **4**= ηη **5**= ηη΄ V.V. Anisovitch, A.V Sarantev Eur. Phys. Jour. **A16**, 229 (2003)

$D^0 \rightarrow K_s^0 \pi^+ \pi^-$ (K-Matrix Model) **BABAR**

	K-Matrix model resonances + $\pi\pi$ S-wave term					
$ \frac{5}{5} = \begin{bmatrix} a^{a} \\ b^{a} \end{bmatrix} $ 81K $ \frac{5}{5} = \begin{bmatrix} b^{b} \\ b^{a} \end{bmatrix} $ K *(892)-	Resonance	$\operatorname{Re}\{a_r e^{i\phi_r}\}$	$\operatorname{Im}\{a_r e^{i\phi_r}\}$	Fit fraction (%)		
	$K^{*}(892)^{-}$	-1.159 ± 0.022	1.361 ± 0.020	58.9		
⁵ prelim.	$K_0^*(1430)^-$	2.482 ± 0.075	-0.653 ± 0.073	9.1		
	$K_2^*(1430)^-$	0.852 ± 0.042	-0.729 ± 0.051	3.1		
	$K^{*}(1410)^{-}$	-0.402 ± 0.076	0.050 ± 0.072	0.2		
$m^2 (GeV^2/c^4)$ $m^2 (GeV^2/c^4)$	$K^{*}(1680)^{-}$	-1.00 ± 0.29	1.69 ± 0.28	1.4		
²⁰⁰⁰ c)	$K^{*}(892)^{+}$ DCS	0.133 ± 0.008	-0.132 ± 0.007	0.7		
	$K_0^*(1430)^+$ DCS	0.375 ± 0.060	-0.143 ± 0.066	0.2		
	$K_2^*(1430)^+$ DCS	0.088 ± 0.037	-0.057 ± 0.038	0.0		
	$\rho(770)$	1 (fixed)	0 (fixed)	22.3		
	$\omega(782)$	-0.0182 ± 0.0019	0.0367 ± 0.0014	0.6		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_2(1270)$	0.787 ± 0.039	-0.397 ± 0.049	2.7		
	$ \rho(1450) $	0.405 ± 0.079	-0.458 ± 0.116	0.3		
ſ	β_1	-3.78 ± 0.13	1.23 ± 0.16	—		
	β_2	9.55 ± 0.20	3.43 ± 0.40	—		
$\pi\pi$ S-wave term	β_4	12.97 ± 0.67	1.27 ± 0.66	—		
	f_{11}^{prod}	-10.22 ± 0.32	-6.35 ± 0.39	_		
L	sum of $\pi^+\pi^-$ S-wave			16.2		

Value of χ^2 compatible with <u>nominal model</u> since it is dominate by the P-wave components, which are identical between the two model Total fit fraction = 1.16

$D^0 \rightarrow K_s^0 \pi^+ \pi^-:Summary$

	_	Belle	Bal	Bar	How does the Dalitz model
		Isobar Model	Isobar Model	K-Matrix	affect the measurements?
_		534k @ 540 fb ⁻¹	390k @ 270 fb ⁻¹	81k @ 91.5 fb ⁻¹	affect the measurements?
_	State		Fit Fraction(%)		
	K*(892)⁻	62.27	58.1	58.9	CKM angle w
	K ₀ *(1430)⁻	7.24	6.7	9.1	Cixivi angle y
	K ₂ *(1430) ⁻	1.33	3.6	3.1	
	K*(1410)⁻	0.48	0.1	0.2	$\gamma = 92^{\circ} \pm 41^{\circ} \pm 11^{\circ} \pm 12^{\circ}$
	K*(1680)⁻	0.02	0.6	1.4	ти
	K*(892)+	0.54	0.5	0.7	$x = 520 + 15^{\circ} \pm 20 \pm 0^{\circ}$
	K ₀ *(1430)+	0.47	0.0	0.2	$\gamma = 55 - 18^{\circ} \pm 5 \pm 9$
	K ₂ *(1430)+	0.13	0.1	0.0	
	K*(1410)+	0.13			
	K*(1680)+	0.04			D ⁰ - D ⁰ mixing
	ρ(770)	21.11	21.6	22.3	
	ω(782)	0.63	0.7	0.6	$x = (0.80 \pm 0.29^{+0.09+0.10})\%$
	f ₂ (1270)	1.8	2.1	2.7	
	ρ(1450)	0.24	0.1	0.3	$v = (0.33 \pm 0.24^{+0.08+0.06})$
	f ₀ (980)	4.52	6.4		
	f ₀ (1370)	1.62	2.0	S-wave	
	σ_1	9.14	7.6	16.2	
	σ_2	0.88	0.9	10.2	
	NR	6.15	8.5		

Summary

BaBar and Belle: B and c-Factories

The BaBar Detector The Belle detector D1.5 T solenoid Aerogel Cherenkov cnt. Calorimeter (superconducting) 6580 CsI(TI) crystals n=1.015~1.030 SC solenoid 3.5GeV e+ Cherenkov 1.5T e+ (3.1 GeV) Detector 144 quartz bars Csl(TI)16Xo 11.000 PMTs TOF counter 8GeVe-Silicon Vertex Tracker - (9 GeV 5 double-sided Tracking + dE/dxlayers small cell + He/C₂H₅ Drift Chamber 40 layers μ/k detection Instrumented Flux Return 14/15 lyr. RPC+Fe 18-19 layers Si vtx.det. 3 lyr. DSSD Integrated Luminosity(log) 800 Peak luminosity: $|2.1 \times 10^{33}$ cm⁻² s⁻¹ Luminosity [fb⁻¹] -KEKB 700 BaBar 600 PEP II Delivered Luminosity: 476.60/fb 710 fb⁻¹ BaBar Recorded Luminosity: 458.49/fb 500 Integrated L Off Peak Luminosity: 41.61/fb 400 Delivered Luminosity. Recorded Luminosity - Off Peak 300 200 458 fb⁻¹ 200 100 100 0 **9**9/6 00/6 01/6 02/6 03/6 04/6 05/6 06/6 000 °oo, 2005 2006 2007

Charm07, Ithaca, NY August 5-8, 2007

Marco Pappagallo

07/6

 $D_s^+ \rightarrow K^+ K^- \pi^+)$ Z

 $\mathcal{B}(\mathsf{D}^0 \rightarrow \mathsf{K}^+\mathsf{K}^-\pi^0)$

$D^0 \rightarrow \overline{K}^0 \pi^+ \pi^-$ decay & CKM angle γ

 γ can be measured from the interference between decays with b \rightarrow cus and b \rightarrow ucs transitions

Interference occurs when some final state is accessible by both D⁰ and \overline{D}^0 Giri-Grossman-Soffer-Zupan: PRD68, 054018 (2003): Final state = $K_s^0 \pi^+ \pi^- \Rightarrow$ Dalitz Plot Analysis

 $\mathbf{B}^{-}: \quad \mathcal{A}_{-}(m_{-}^{2}, m_{+}^{2}) = \left| A(B^{-} \to D^{0} K^{-}) \right| \left[f(m_{-}^{2}, m_{+}^{2}) + r_{B} e^{i\delta_{B}} e^{-i\gamma} f(m_{+}^{2}, m_{-}^{2}) \right]$ $\mathbf{B}^{+}: \quad \mathcal{A}_{+}(m_{-}^{2}, m_{+}^{2}) = \left| A(B^{+} \to \overline{D}^{0} K^{+}) \right| \left[f(m_{+}^{2}, m_{-}^{2}) + r_{B} e^{i\delta_{B}} e^{+i\gamma} f(m_{-}^{2}, m_{+}^{2}) \right]$

$$r_{B} = \frac{\left|\mathcal{A}(B^{-} \to \overline{D}^{0}K^{-})\right|}{\left|\mathcal{A}(B^{-} \to D^{0}K^{-})\right|} \approx 0.1 - 0.3$$

$$\delta_{B} = \text{strong phase}$$

$$\gamma = \text{weak phase}$$

Simultaneous fit to the $|\mathcal{A}_{(m_{-}^{2}, m_{+}^{2})|^{2}$ and $|\mathcal{A}_{+}(m_{-}^{2}, m_{+}^{2})|^{2}$ distributions to determine the CP parameters r_{B} , δ_{B} and γ for each decay mode ($B^{\pm} \rightarrow D^{(*)0} K^{(*)\pm}$).

 $D^0 \rightarrow \pi^+ \pi^- \pi^0$

							16.41 Contract (19.20)
3 - 3 - 5 8000- 1 (c) - 5 8000- 1	(2)	10 4000FAL+	(h)	State	R_r (%)	$\Delta \phi_{\tau}$ (°)	$f_{\tau}(\%)$
2 3	(a)	5	(0)	$\rho^{+}(770)$	100	0	$67.8 \pm 0.0 \pm 0.6$
29 6000	3	3 3000	-	$\rho^{0}(770)$	$58.8 \pm 0.6 \pm 0.2$	$16.2 \pm 0.6 \pm 0.4$	$26.2 \pm 0.5 \pm 1.1$
84		ž II V	AI	$\rho^{-}(770)$	$71.4 \pm 0.8 \pm 0.3$	$-2.0\pm0.6\pm0.6$	$34.6 \pm 0.8 \pm 0.3$
⊂ 4000 J	+ =	c 2000 \	111	$\rho^{+}(1450)$	$21\pm 6\pm 13$	$-146 \pm 18 \pm 24$	$0.11 \pm 0.07 \pm 0.12$
s'	1 1	S I V	/ 11	$\rho^{\circ}(1450)$	$33\pm6\pm4$	$10\pm8\pm13$	$0.30 \pm 0.11 \pm 0.07$
E 2000	1	법 1000법 · /		$\rho^{-}(1450)$	$82\pm5\pm4$	$16 \pm 3 \pm 3$	$1.79 \pm 0.22 \pm 0.12$
	1 / t		E.	$\rho^{+}(1700)$	$225 \pm 18 \pm 14$	$-17 \pm 2 \pm 3$	$4.1 \pm 0.7 \pm 0.7$
	1 2 3	H 6 1 2	3	$\rho^{0}(1700)$	$251 \pm 15 \pm 13$	$-17 \pm 2 \pm 2$	$5.0\pm0.6\pm1.0$
$\int_{-1}^{1} \int_{-1}^{2} (G_{e}V^{2}/c^{4})^{2}$	(GeV^2/c^4)	s. (GeV	² /c ⁴)	$\rho^{-}(1700)$	$200 \pm 11 \pm 7$	$-50\pm 3\pm 3$	$3.2\pm0.4\pm0.6$
	+ '		- Intern	f_0 (980)	$1.50 {\pm} 0.12 {\pm} 0.17$	$-59\pm5\pm4$	$0.25 \pm 0.04 \pm 0.04$
			IV00-	$f_0(1370)$	$6.3 \pm 0.9 \pm 0.9$	$156 \pm 9 \pm 6$	$0.37 \pm 0.11 \pm 0.09$
		Br	SUN	$f_0(1500)$	$5.8 \pm 0.6 \pm 0.6$	$12 \pm 9 \pm 4$	$0.39 \pm 0.08 \pm 0.07$
	-	all and a	There	$f_0(1710)$	$11.2 \pm 1.4 \pm 1.7$	$51 \pm 8 \pm 7$	$0.31 \pm 0.07 \pm 0.08$
2 300 + B-→D°K	9 200 H	- mexillupus	100	$f_2(1270)$	$104 \pm 3 \pm 21$	$-171\pm3\pm4$	$1.32\pm0.08\pm0.10$
a south the	2 300 JAL	Collegan		$\sigma(400)$	$6.9 \pm 0.6 \pm 1.2$	$8 \pm 4 \pm 8$	$0.82 \pm 0.10 \pm 0.10$
5 H+++	6	B		Non-Res	57±7±8	$-11\pm 4\pm 2$	$0.84 \pm 0.21 \pm 0.12$
$\begin{array}{c} 100\\ sup_{H}\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	Events / 0.1	$\frac{1}{s_{-}(\text{GeV}^{2}/\text{c}^{4})}^{3}$	23	2 fb ⁻¹ E	ABAR data	for γ mea	surement
he was the			BR(I	B ⁻ →D _{ππ}	$_{\pi 0}K^{-}$) = (4.6 =	$\pm 0.8 \pm 0.7$)	$\times 10^{-6}$
D→u vs. D	$\rightarrow c$		A(B-	$\rightarrow D_{\pi\pi\pi0}$	K^{-}) = -0.02 :	$\pm 0.15 \pm 0.0$)3
$r_{\rm P} e^{i(\delta_{\rm B}^{-\gamma})} \rightarrow$	(ρ, θ)		$\rho^- =$	0.72 ± 0	$.11 \pm 0.06$;	$\theta^- = (17)$	3 ± 42 ± 19)°
- B	(1, , ,)		$0^{+} =$	0.75 ± 0	11 ± 0.06 :	$\theta^- = (14)$	$7 + 23 + 13)^{\circ}$

Observation of $D_{s1}(2536)^+ \rightarrow D^+\pi^-K^+$

 $\begin{array}{l} D_{s1}(2536)^+:\ J^P=1^+,\ j_l=3/2;\ {\rm known\ modes\ }D^{*+}K^0_S,\ D^{*0}K^+,\ D^+_s\pi^+\pi^-.\\ D^+\pi^-\ {\rm cannot\ come\ from\ }D^{*0}:\ M_{D^0}+M_{\pi^-}>M_{D^{*0}}. \end{array}$

$$\frac{B(D_{s1}^+ \to D^+ \pi^- K^+)}{B(D_{s1}^+ \to D^{*+} K^0)} = 3.17 \pm 0.17 \pm 0.36\%$$