Charm Mixing and Strong Phases Using Quantum Correlations at CLEO-c

Werner Sun, Cornell University 5-8 August 2007, Charm07 Workshop, Ithaca, NY

Motivation Technique Results

Charm Mixing So Far

$$i \frac{\partial}{\partial t} \begin{pmatrix} D \\ \overline{D} \end{pmatrix} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} D \\ \overline{D} \end{pmatrix}$$
 where $H_{11} = M_{11} - i \frac{\Gamma_{11}}{2}$ etc..

$$c = \frac{\Delta M}{\Gamma}$$
 and $y = \frac{\Delta \Gamma}{2\Gamma}$

- $H_{12}, H_{21} \neq 0 \Rightarrow$ flavor eigenstates \neq mass eigenstates.
- **Previous studies:**

Werner Sun, Cornell University

- $y = \frac{\tau(D \to K\pi)}{\tau(D \to KK)} 1$ Direct lifetime measurements:
 - Compare K^+K^- and $\pi^+\pi^-$ with $K^-\pi^+$.
- Time-dependent Dalitz analysis of $K_{s}^{0}\pi^{+}\pi^{-}$:
 - Intermediate CP-eigenstates give y.
 - Interference between CP+ and CP- gives x.
- Time-dependent wrong-sign rate $D^0 \rightarrow K^-\pi^+$:
 - Interfering DCS and mixing amplitudes modulate exponential decay time.
 - Ambiguity from strong phase: $y' = y \cos \delta x \sin \delta$

$$< K^{-}\pi^{+}|\overline{D^{0}}> / < K^{-}\pi^{+}|D^{0}> = -re^{-i\delta}$$

- Time-dependence gives 1^{st} -order x/y sensitivity:
 - Need boosted *D* mesons to resolve decay time.

Quantum Correlations at CLEO-c

- At CLEO-c, interference comes for free.
 - Appears in *time-integrated* yields.

 $M_{ij}^{2} = \left| \left\langle i \mid D^{0} \right\rangle \left\langle j \mid \overline{D^{0}} \right\rangle - \left\langle j \mid D^{0} \right\rangle \left\langle i \mid \overline{D^{0}} \right\rangle \right|^{2}$ C = -1*e*+*e* CP+ CP+ Forbidden by **CP** conservation CP-CP-CP+ Maximal enhancement CP-Forbidden if no mixing $K^-\pi^+$ $K^-\pi^+$ CP_{\pm} $K^-\pi^+$ Interference of **CF** with DCS CP+ $K^-\pi^+$ Unaffected X $K^+l^-\nu$

1st-order sensitivity to y:

- Reconstruct K^+K^- (CP+) decay \Rightarrow other side must be D_1 (CP-)
- Inclusive K⁺K⁻ rate probes y.

$$n_{KK} = 2B_{KK}\Gamma_{1} = 2B_{KK}(1-y)\Gamma$$

$$1-y = \frac{n_{KK}}{2N_{DD}}\frac{1}{B_{KK}}$$
Effective \mathcal{B}
at $\psi(3770)$

First measurement of cos
$$\delta$$
:
• Reconstruct K^+K^- with $K^-\pi^+ \Rightarrow$
 $K^-\pi^+$ must come from D_1 (CP–).
rate $\propto \left| \left\langle K^-\pi^+ \mid D^0 \right\rangle + \left\langle K^-\pi^+ \mid \overline{D^0} \right\rangle \right|^2$
 $\propto B_{K\pi} \left| 1 + re^{-i\delta} \right|^2$
 $= B_{K\pi} (1 + 2r\cos\delta + r^2)$

Werner Sun, Cornell University

- We use yields for
 - single tags (one *D* reconstructed)
 - double tags (D and \overline{D} reconstructed)

DT	Κ − <i>π</i> +	e ⁺	CP+	CP-	
K-π+	$R_{\rm M}/r^2$	quant	um-corr	elated	rate
κ⁺π [−] <i>e</i> −	1+21²(1-2005²0)	iı 1	ncohere	nt rate	
CP+	1 + 2 <i>r</i> cosδ + <i>r</i> ²	1	0		
CP–	1 – 2 <i>r</i> cosδ + <i>r</i> ²	1	2	0	
ST	1 + 2yrcosδ + r ²	1	1 – y	1 + y	

- Compare QC effective \mathcal{B} with incoherent \mathcal{B} to give y and $cos\delta$.
- Sources of incoherent \mathcal{B} :
 - Externally measured \mathcal{B} s.
 - Semileptonic tags at $\psi(3770)$ (immune to QC).
- CP violation neglected.

ST
$$X \leftarrow \overline{D} \quad D \rightarrow i$$

DT $j \leftarrow \overline{D} \quad D \rightarrow i$

Analysis Overview

- Dataset: 281 pb⁻¹ = 10^6 C-odd $D^0 \overline{D^0}$.
- Combine inputs + error matrix in a χ^2 fit.
 - ST and DT yields
 - Efficiencies (signal and background)
 - Crossfeed/background estimates
 - Systematic errors (small compared to stat.)
 - External *B* and y^(*) measurements
- Single tag yields (8):

<i>Κ</i> ⁻ π ⁺			1 + 2yrcosδ + r ²
Κ +π-			1 + 2yrcosδ + r ²
K − K +			1 – y
$\pi^-\pi^+$	CF	> +	1 – y
$K^0{}_{S}\pi^0\pi^0$			1 – y
Κ ⁰ _S π ⁰			1 + y
<i>K</i> ^o sղ	CF)_	1 + y
K ⁰ sω			1 + y

Fully-reconstructed DT yields (24):

<i>K</i> -π+	<i>K</i> +π-	(1)	$1+2r^{2}(1-2\cos^{2}\delta)+r^{4}$
Κ +π-	Κ +π-	(1)	$(x^2 + y^2)/2$
<i>Κ</i> -π+	<i>Κ</i> -π+	(1)	$(x^2 + y^2)/2$
Κπ	CP+	(3)	1 + 2 <i>r</i> cosδ + <i>r</i> ²
Kπ	CP-	(3)	$1 - 2r\cos\delta + r^2$
CP+	CP-	(9)	2

Inclusive e⁺ or e⁻ vs. hadronic (14):

е-	<i>Κ</i> ⁻ π ⁺	(1)	1
e +	Κ +π-	(1)	1
<i>e</i> -/ <i>e</i> +	CP+	(6)	1
<i>e</i> -/ <i>e</i> +	CP–	(6)	1

• $K_{L}^{0}\pi^{0}$ (=*CP*+) vs. hadronic (5):

$K^0_L \pi^0$	Κπ	(2)	1 + 2 $r\cos\delta$ + r^2
$K^0_L \pi^0$	CP–	(3)	2

Yield Measurements

- Fully-reconstructed single tags:
 - Fit beam-constrained mass distribution.

$$M_{BC} = \sqrt{E_{beam}^2 - |p_D|^2}$$

- Fully-reconstructed double tags:
 - Two fully-reconstructed STs
 - Count events in 2D M_{BC} plane.
- Inclusive semileptonic DTs:
 - One fully-reconstructed ST
 - Plus one electron candidate
 - Fit e[±] momentum spectrum
- K^{0} , π^{0} double tags:
 - One fully-reconstructed ST
 - Plus one π^0 candidate н.
 - Compute missing mass-squared
 - Signal peaks at M²(K⁰).

External Measurements

- External inputs dramatically improve y and cosδ precision.
- All correlations among measurements included in fit.
- Standard fit includes:
 - Info on r needed to obtain coss:

$$R_{WS} = r^2 + ry' + R_M$$

•
$$R_M = (x^2 + y^2)/2$$

• Assume
$$x\sin\delta = 0 \Rightarrow y' = y\cos\delta$$

- CP-eigenstate Bs:
 - Also $K\pi$ because correlated in PDG

Parameter	Average
\overline{y}	0.00662 ± 0.00211
x	0.00811 ± 0.00334
r^2	0.00339 ± 0.00012
y'	0.0034 ± 0.0030
$\frac{x'^2}{x'^2}$	0.00006 ± 0.00018

Ι.	Parameter		Average			
	R_{WS}	0.00409 ± 0.00022				
	R_M	0.00017 ± 0.00039				
	$K^{-}\pi^{-}$	t	0.0381 ± 0.0009			
	K^-K	$K^{+}/K^{-}\pi^{+}$	0.1010 ± 0.0016			
	$\pi^{-}\pi^{+}$	$K^{-}\pi^{+}$	0.0359 ± 0.0005			
	$K_L^0\pi^0$	0.0097 ± 0.0003				
	$K^0_S\pi^0$		0.0115 ± 0.0012			
	$K^0_S\eta$	$\Lambda_S^0 \eta = 0.00380 \pm 0.000$				
	$K^0_S\omega$		0.0130 ± 0.0030			

- Extended fit averages y and y':
 - CP+ lifetimes (y)
 - $K_{S}^{0} \pi^{+} \pi^{-}$ Dalitz analysis (x, y)
 - $K\pi$ CP-conserving fits (y', r^2 , R_M)
 - Includes covariance matrices from Belle, BABAR, CLEO (thanks!)

Werner Sun, Cornell University

Fit Results

CLEO PRELIMINARY

		[] = with external	input			I il	
	Parameter	Standard Fit	Extended Fit				
	N _{D⁰D⁰} (10 ⁶)	1.046±0.019±0.013	1.044±0.019±0.012			Sta	
	y (10 ⁻³)	-33 ± 16 ± 10	[4.3 ± 1.3 ± 0.7]			•	
	<i>r</i> ² (10 ⁻³)	[6.6 ± 1.9 ± 0.8]	[3.39 ± 0.08 ± 0.00]				
	ငဝၭစ်	1.03 ± 0.19 ± 0.08	0.93 ± 0.32 ± 0.04				
	x ² (10 ⁻³)	[-0.6 ± 1.3 ± 0.7]	[0.05 ± 0.05 ± 0.00]				
	<i>B</i> (K ⁻ π ⁺) (%)	[3.77 ± 0.07 ± 0.03]	[3.77 ± 0.07 ± 0.03]				
	<i>Ɓ(K⁻K</i> ⁺) (10⁻³)	[3.81 ± 0.09 ± 0.03]	[3.88 ± 0.08 ± 0.03]		U		
	$\mathcal{B}(\pi^{-}\pi^{+})$ (10 ⁻³)	[1.35 ± 0.03 ± 0.01]	[1.36 ± 0.03 ± 0.01]			C	
	$\mathcal{B}(K^{0}{}_{S}\pi^{0}\pi^{0})(10^{-3})$	8.08 ± 0.34 ± 0.51	8.35 ± 0.32 ± 0.52			Ex	
	$\mathcal{B}(K^0{}_S\pi^0)$ (%)	[1.18 ± 0.03 ± 0.03]	[1.14 ± 0.03 ± 0.03]			_ · · ·	
	<i>B</i> (K ⁰ _S η) (10 ⁻³)	[4.56 ± 0.21 ± 0.25]	[4.41 ± 0.19 ± 0.25]				
	<i>Β</i> (K ⁰ _S ω) (%)	[1.16 ± 0.04 ± 0.06]	[1.11 ± 0.03 ± 0.05]				
	<i>B</i> (X [−] e ⁺ ν) (%)	6.55 ± 0.16 ± 0.17	6.59 ± 0.16 ± 0.17				
	$\mathcal{B}(K^0_L\pi^0)$ (%)	[0.98 ± 0.03 ± 0.02]	[1.02 ± 0.03 ± 0.02]				
	χ²/ndof	27.8/46	58.1/58		(ا ک نتا 0	
\mathcal{B} measurements do not supersede other CLEO-c results!							

- Likelihood curves +95% CL ULs
- Standard fit:

Werner Sun, Cornell University

- C+ contamination of initial state (not expected, cf. A. Petrov):
 - $e^+e^- \rightarrow \gamma D^0 \overline{D^0}$ is C+, but photon must be radiated from D^0 or $\overline{D^0}$, or from $\psi(3770)$ itself.
 - ISR, FSR, bremsstrahlung photons do not flip C eigenvalue.
- Allow fit to determine C+ fraction.
 - Include same-*CP* double tags $(CP\pm/CP\pm)$.
 - Allowed decay only for C+.
 - All yields consistent with zero.
 - Fit each yield to sum of C- and C+ contributions.
 - Results: $C + / C = -0.003 \pm 0.023$.
 - No evidence for *C*+.
 - Other results unchanged.

• Variation of $cos\delta$ and y with xsin δ -include additional systematic error:

- Standard fit, for $\Delta(x \sin \delta) = \pm 0.0034$:
 - $\cos\delta = 1.03 \pm 0.19$ (stat) ± 0.08 (syst) ± 0.02 (xsin δ)
 - $y = -0.033 \pm 0.016$ (stat) ± 0.10 (syst) ± 0.00 (xsin δ)
- **CLEO PRELIMINARY**
- Extended fit, $\Delta(x \sin \delta)$ still under investigation:
 - $\cos\delta = 0.93 \pm 0.32$ (stat) ± 0.04 (syst) $\pm 0.??$ (xsin δ)
 - $y = +0.0043 \pm 0.0013$ (stat) ± 0.0007 (syst) $\pm 0.00?$? (xsin δ)
 - Alternative: fit for $x \sin \delta$ by sacrificing improvement in y precision.

Werner Sun, Cornell University

- First measurement of $cos\delta$ (needed to interpret other *D* mixing results).
 - Allows y' to be added to world-average y, but with the assumption $x\sin\delta = 0$.
- Standard fit:
 - $\cos \delta = 1.03 \pm 0.19 \text{ (stat)} \pm 0.08 \text{ (syst)} \pm 0.02 \text{ (xsin}\delta)$
 - $y = -0.033 \pm 0.016$ (stat) ± 0.10 (syst) ± 0.00 (xsin δ)

CLEO PRELIMINARY

- Extended fit:
 - $\cos \delta = 0.93 \pm 0.32$ (stat) ± 0.04 (syst) $\pm 0.??$ (xsin δ)
 - $y = +0.0043 \pm 0.0013$ (stat) ± 0.0007 (syst) $\pm 0.00?$? (xsin δ)
- Can measure $x \sin \delta$ using $C + D^0 \overline{D^0}$ pairs from $e^+e^- \rightarrow \gamma D^0 \overline{D^0}$ at $E_{cm} = 4170$ MeV.
- Demonstrated new technique for charm mixing studies.
 - Time-independent 1st-order sensitivity to mixing parameters and phases.
 - Different systematics from other experiments.
 - With full CLEO-c dataset (E_{cm} = 3770 & 4170 MeV) expect:

 $σ(cosδ) \sim ±0.1-0.2$ $σ(y) \sim ±0.01$ $σ(xsinδ) \sim ±0.03$

BACKUP SLIDES

Werner Sun, Cornell University

Previous Results (Oct 2005)

- PANIC'05 prelim. results:
 - 281 pb⁻¹.
 - No systematics.
 - Only one *CP* mode.
 - With r^2 constrained to world average, $\cos \delta = 1.08 \pm 0.66$.
 - No other external measurements.
- Now:
 - Added 70% more CP-
 - K⁰_sη, K⁰_sω
 - Added $K_{L}^{0}\pi^{0}$.

Param.	Value	PDG04 or CLEO-c
N _D ⁰ _D ⁰	$(1.09 \pm 0.04) \times 10^{6}$	$(1.01 \pm 0.02) \times 10^6$
У	-0.057 ± 0.066	0.008 ± 0.005
r ²	-0.028 ± 0.069	(3.74 ± 0.18)x10 ⁻³ PDG + Belle + FOCUS
rz	0.130 ± 0.082	
R _M	(1.74 ± 1.47)x10 ⁻³	< ~1x10 ⁻³
<i>Ɓ(K</i> [−] π ⁺)	(3.80 ± 0.29)%	(3.91 ± 0.12)%
B(K [−] K ⁺)	(0.357 ± 0.029)%	(0.389 ± 0.012)%
$\mathcal{B}(\pi^-\pi^+)$	(0.125 ± 0.011)%	(0.138 ± 0.005)%
$\mathcal{B}(K^0{}_{\mathrm{S}}\pi^0\pi^0)$	(0.932 ± 0.087)%	(0.89 ± 0.41)%
$\mathcal{B}(K^0{}_{S}\pi^0)$	(1.27 ± 0.09)%	(1.55 ± 0.12)%
<i>B</i> (X [−] e ⁺ v)	(6.21 ± 0.42)%	(6.87 ± 0.28)%

- Mode-dependent correlated uncertainties cancel in y and cosδ, but only if external measurements are not included.
 - Tracking, π^0 , η , K_s^0 , PID, EID efficiency, FSR systematics: use DHad.
 - ΔE cut, ω mass cut, K_{s}^{0} mass cut, K_{s}^{0} flight significance cut, K_{s}^{0} PID.
 - Peaking background BFs: values and errors from PDG.
 - Multiple candidates, SL form factor.
 - Event selection variations:
 - dominates y and cosd syst error.
- Uncorrelated uncertainties:
 - Fit function variations.

Source	Uncertainty (%)	Scheme
Track finding	0.3	per track
K^\pm hadronic interactions	0.6	$\mathrm{per}\ K^\pm$
$K^0_S { m finding}$	1.9	$\mathrm{per}~K^0_S$
π^0 finding	4.0	$\mathrm{per}\;\pi^0$
$\eta { m finding}$	4.0	per η
dE/dx and RICH	0.3	per π^{\pm} PID cut
dE/dx and RICH	0.3	per K^{\pm} PID cut
EID	1.0	per e^{\pm}

	'				'	
	ΔE	ISR^*	FSR^*	Lepton Veto*	Other	
$K^{\mp}\pi^{\pm}$	0.5	0.5	1.2	0.5		
K^+K^-	0.9	0.5	0.8	0.4	0.5	$K^{\pm}\cos heta$ cut
$\pi^+\pi^-$	1.9	0.5	1.7	3.2		
$K^0_S \pi^0 \pi^0$	2.6	0.5			1.5	K^0_S daughter PID
					0.7	resonant substructure
$K^0_S\pi^0$	0.9	0.5				
$K^0_S\eta$	5.5	0.5			0.3	η mass cut
					0.7	${\cal B}(\eta o \gamma \gamma) \; [22]$
$K^0_S \omega$	1.2	0.5	0.8		1.4	ω mass cut
					0.8	$\mathcal{B}(\omega \to \pi^+ \pi^- \pi^0)$ [22]
$X e \nu$		0.5	0.3		2.0	$\operatorname{spectrum} \operatorname{extrapolation}$
					0.7	multiple e^{\pm} candidates
$K^0_L\pi^0$		0.5			0.7	background subtraction
					0.3	extra track veto
					1.4	signal shape
					1.6	extra π^0 veto
					0.5	η veto
Scheme	$\operatorname{per} D$	per yield	$\operatorname{per} D$	per ST	$\operatorname{per} D$	
$\lambda_{ m DT}$	$\sqrt{\alpha^2 + \beta^2}$	$(\alpha + \beta)/2$	$2 \alpha + \beta$	0	$\sqrt{\alpha^2 + \beta^2}$	

Werner Sun, Cornell University