

D^0 mixing at Belle

L. M. Zhang Syracuse University

Charm 2007

(August 5-8, Cornell University, New York)

$D^0-\overline{D}^0$ mixing

- Only mixing via light quark intermediate states
- doubly-Cabibbo-suppressed with respect to Γ_{D}
- long-distance contributions •

D0	C	W I	d,s,(b)	w	u	D0
	ū	 	d,s,(b)	1	c	

$$\begin{array}{lll} \mbox{Flavor eigenstates are} & |D_{1,2}\rangle = p |D^0\rangle + q |\overline{D}{}^0\rangle \\ |D_{1,2}(t)\rangle = e_{1,2}(t) |D_{1,2}\rangle & e_{1,2}(t) = e^{-(\Gamma_{1,2}/2 + im_{1,2})t} \\ \\ \hline & |D^0(t)\rangle \ = \ |D^0\rangle \frac{e_1(t) + e_2(t)}{2} + \left(\frac{q}{p}\right) |\overline{D}{}^0\rangle \frac{e_1(t) - e_2(t)}{2} \\ \\ & |\overline{D}{}^0(t)\rangle \ = \ |\overline{D}{}^0\rangle \frac{e_1(t) + e_2(t)}{2} + \left(\frac{p}{q}\right) |D^0\rangle \frac{e_1(t) - e_2(t)}{2} \end{array}$$

Mixing $x=rac{m_1-m_2}{\overline{\Gamma}}$ $y=rac{\Gamma_1-\Gamma_2}{2\overline{\Gamma}}$ $\overline{\Gamma}=rac{\Gamma_1+\Gamma_2}{2}$ parameters:

$$\frac{10^{-6}-10^{-3} \text{(short distance)}}{10^{-3}-10^{-2} \text{ (long distance)}}$$

• If obtain |x| >> |y| or $CPV \implies$ New Physics

not

Charm'07

BELLE

Common features of analyses

- Initial flavor of D^0 is determined from $D^{*+} \rightarrow D^0 \pi^+$ or $D^{*-} \rightarrow \overline{D}^0 \pi^-$ Background largely reduced: $Q = m_{K\pi\pi^-} m_{K\pi^-} m_{\pi}$ only 6 MeV (very near threshold)
- Common backgrounds:
 - Random π combined with real D^0 decays
 - Combinatorial (random combinations of tracks)
- p_{D^*} cut to eliminate D^* 's from B decays
- Signal/background yields obtained from *m*-*Q* fit
- (Unbinned) ML fit to $t = (l_{dec}/p)(m/c)$

Vertex Reconstruction as example of $K \pi$

$D^{0}(t) \rightarrow CP \ eigenstates \ K^{+}K^{-}, \pi^{+}\pi^{-}$

M. Staric et al. (Belle Collaboration), PRL 98, 211803 (2007)

- Measurement of lifetime difference between $D^0 \rightarrow K^-\pi^+$ and K^+K^- , $\pi^+\pi^-$
 - mixing parameter: $y_{CP} = \frac{\tau(K^- \pi^+)}{\tau(K^- K^+)} 1 \approx y \cos \phi$
 - in *CP* conservation limit: $y_{CP} = y$
- If *CP* not conserved
 - *CP* violating parameter:

$$\Gamma = \frac{\tau(\overline{D}^0 \to K^- K^+) - \tau(D^0 \to K^- K^+)}{\tau(\overline{D}^0 \to K^- K^+) + \tau(D^0 \to K^- K^+)}$$

Previous Measurements E791, PRL 83, 32 (1999) FOCUS, PLB 485, 62 (2000) CLEO, PRD 65, 092001 (2002) Belle, PRL 88, 162001 (2002) Babar, PRL 91, 121801 (2003)

 $y_{CP} = (1.09 \pm 0.46)\%$ [average]

$$y_{CP} = y \cos \phi - \frac{1}{2} A_M x \sin \phi$$
$$A_{\Gamma} = \frac{1}{2} A_M y \cos \phi - x \sin \phi$$

 $|q/p|^2 = 1 + A_M$ arg $(q/p) = \phi$

(S. Bergmann et al., PLB 486, 418 (2000))

$D^{0}(t) \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}, Data distributions$

- Analysis cuts
 - Figure of merit: statistical error on y_{CP}
- Background estimated from sidebands in *m*

 $D^{0}(t) \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}, Timing fits$

• Parameterization of proper decay time distribution

 $D^{0}(t) \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}, Checks$

Divide the data into sub-samples:

L. M. Zhang

$D^{0}(t) \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}, Systematics$

Cross-checks:

- MC test: $y_{CP}(\text{out}) y_{CP}(\text{input}) < 0.04\%$
- Independent of R(t) parameterization:

 $R(t) = \text{single Gaussian: } \Delta \tau = 3.5\%, \Delta y_{CP} = 0.01\%$

- Exchange data sideband with background from MC

 $\Delta y_{CP} = -0.04\%$

Systematic errors:	У _{сР}	A
acceptance	0.12%	0.07%
equal t_{n} assumption	0.14%	0.08%
mass window position	0.04%	0.003%
difference btw background and sidebands	0.09%	0.06%
difference btw final states opening angles	0.02%	
background parameterization	0.07%	0.07%
resolution function	0.01%	0.01%
analysis cuts	0.11%	0.05%
binning	0.01%	0.01%
TOTAL	0.25%	0.15%

 $D^{0}(t) \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}, Results$

Final result:

$$y_{_{CP}} = 1.31 \pm 0.32 \pm 0.25$$
 %

> 3 σ above zero
 (first evidence for D⁰-D⁰ mixing)

Search for CP violation: $A_{\Gamma} = \frac{\Gamma(D^0 \to K^+ K^-) - \Gamma(\overline{D}{}^0 \to K^+ K^-)}{\Gamma(D^0 \to K^+ K^-) + \Gamma(\overline{D}{}^0 \to K^+ K^-)}$

 $A_{_{\Gamma}} = 0.01 \pm 0.30 \pm 0.15$ %

no evidence for CP violation

There is a difference between $K^-\pi^+$ and K^-K^+

Dalitz plot analysis of $D^0(t) \rightarrow K_S^0 \pi^+ \pi^-$

L.M.Zhang et al. (Belle Collaboration), arXiv:0704.1000v2 (submitted to PRL)

- Difference decays identified through Dalitz plot
 - CF: $D^0 \rightarrow K^{\star}\pi^+$ DCS: $D^0 \rightarrow K^{\star}\pi^-$ CP: $D^0 \rightarrow \rho^0 K_S^0$
- $|f\rangle = |K_{S}^{0}\pi^{+}\pi^{-}\rangle$ Formula ۲ $\langle f|H|D^0(t)
 angle ~=~ \langle f|H|D^0
 angle rac{e_1(t)+e_2(t)}{2} + \left(rac{q}{n}
 ight)\langle f|H|\overline{D}{}^0
 angle rac{e_1(t)-e_2(t)}{2}$ $\langle f|H|\overline{D}{}^0(t)
 angle \ = \ \langle f|H|\overline{D}{}^0
 angle rac{e_1(t)+e_2(t)}{2} + \left(rac{p}{a}
 ight)\langle f|H|D^0
 angle rac{e_1(t)-e_2(t)}{2}$ $\langle f|H|D^0
 angle ~=~ {\cal A}(m_-^2,m_+^2) = \sum\limits_r a_r e^{i\phi_r} {\cal A}_r(m_-^2,m_+^2) + a_{
 m NR} e^{i\phi_{
 m NR}}$ $\langle f | H | \overline{D}{}^{\,0}
 angle \;\; = \;\; \overline{\mathcal{A}}(m_{-}^2,m_{+}^2) = \sum_{n} ar{a}_r e^{i ar{\phi}_r} \mathcal{A}_r(m_{+}^2,m_{-}^2) + ar{a}_{
 m NR} e^{i ar{\phi}_{
 m NR}}$ where $m_{\perp}^2 \equiv m^2 (K_s^0 \pi^{\pm})$ $|\langle f|H|D^0(t)
 angle|^2\equiv |A_1\,e_1(t)+A_2\,e_2(t)|^2$ $=|A_1|^2e^{-\overline{\Gamma}(1+\boldsymbol{y})t}+|A_2|^2e^{-\overline{\Gamma}(1-\boldsymbol{y})t}+2e^{-\overline{\Gamma}t}\left[\operatorname{Re}(A_1A_2^*)\cos(\boldsymbol{x}\overline{\Gamma}t)+\operatorname{Im}(A_1A_2^*)\sin(\boldsymbol{x}\overline{\Gamma}t)\right]$ \implies fit $\{m_{-}^2, m_{+}^2, t\}$ together

$D^{0}(t) \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$, Data distribution

- Reconstruction
 - K_S^{0} reconstruction
 - D^0 decay vertex from $\pi^+ \pi^-$
 - D^0 mass constraint for $K_S^0 \pi^+ \pi^-$
 - $p_{D^*} > 2.5 \text{ GeV}/c$

95% pure

Events/5MeV

 $D^{0}(t) \rightarrow K_{S}^{0}\pi^{+}\pi^{-}, Fit PDFs$

PDFs:

Free parameters are *x*, *y*, *R*(*t*), τ_D and Dalitz-plot parameters (a_r , ϕ_r)

 $D^{0}(t) \rightarrow K_{S}^{0}\pi^{+}\pi^{-}, No-CPV fit$

Fit (1): No CPV ($a_r = \overline{a}_r, \phi_r = \overline{\phi}_r, q/p = 1$)

L. M. Zhang

 $D^{0}(t) \rightarrow K_{S}^{0}\pi^{+}\pi^{-}, No-CPV fit$

Main systematic errors	s ⊿ x(%)	∆y(%)
$p_{D^*} { m cut}$	+0.076	-0.078
BG Dalitz - t	+0.016	+0.044
correlation	-0.056	-0.057
Eff. Par.	+0.004	-0.009
BG t par.s	± 0.037	± 0.063
$M_r \ \& \ \Gamma_r \ { m err.s}$	± 0.020	± 0.010
Form factor	-0.031	+0.006
No q^2 dependence	-0.051	-0.041
K-Matrix model	± 0.073	± 0.058
No NR	-0.015	+0.003
No $K^*(1680)^+$	-0.003	-0.008
No $ ho(1450)$	-0.005	-0.006
$K_0^*(1430)^+$ bias	-0.103	+0.001
$K_{2}^{*}(1430)^{+}$ bias	+0.069	-0.025
$K^{*}(1410)^{\pm}$ bias	-0.016	-0.009
ΤΟΤΑΙ	+0.13	+0.10
IUTAL	-0.16	-0.14

L. M. Zhang

 $D^{0}(t) \rightarrow K_{S}^{0}\pi^{+}\pi^{-}, CPV fits$

Fit (2): Allow for CPV $(a_r \neq \overline{a_r}, \phi_r \neq \overline{\phi_r}, q/p \neq 1)$

Two solutions: $\{x, y, \phi\}$ and $\{-x, -y, \phi+\pi\}$, where $\phi = \arg(q/p)$

\boldsymbol{x}	=	$(0.81 \pm 0.30 \pm 0.17)\%$
\boldsymbol{y}	=	$(0.37 \pm 0.25 \pm 0.15)\%$
q/p	=	$0.86\substack{+0.30 + 0.10 \\ -0.29 - 0.09}$
ϕ	=	$(-14^{+16}_{-18}\pm5)^\circ$

• a_r, ϕ_r consistent with $\overline{a}_r, \overline{\phi}_r \Rightarrow$ no direct CPV

• $|q/p| \phi \Rightarrow$ consistent with CP conservation

Fit (3): No Direct CPV $(a_r = \overline{a_r}, \phi_r = \overline{\phi_r})$:

Including systematics by rescaling factor $\sqrt{1+r^2}$ r = syst./stat. errors

No mixing point (0,0) corresponds to $-2\Delta ln \ L=7.33 \Rightarrow CL = only 2.6\%$

Summary

- Two recent Belle measurements of *D*⁰ mixing parameters presented
- Evidence for D^0 mixing found in decays to *CP* eigenstates $y_{CP} = 1.31 \pm 0.32 \pm 0.25 \% (3.2\sigma)$
- The most sensitive measurement of *x* up to now from time-dependent Dalitz-plot analysis :

 $x = 0.80 \pm 0.29 \pm 0.16 \% (2.4\sigma)$

• CPV search: no evidence found

BACKUP

$$D^{0}(t) \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$$
, Sensitive region for mixing

$$\begin{split} |\langle f|H|D^0(t)\rangle|^2 &\approx |\mathcal{A}(m_-^2, m_+^2)|^2 \times \left\{ 1 + [\operatorname{Im}(\chi)x - \operatorname{Re}(\chi)y](\overline{\Gamma}t) + |\chi|^2 \frac{x^2 + y^2}{4} (\overline{\Gamma}t)^2 \right\} \\ & x \text{ and } y \text{ modulated by } \chi = \frac{q}{p} \frac{\overline{\mathcal{A}}(m_-^2, m_+^2)}{\mathcal{A}(m_-^2, m_+^2)} \end{split}$$

PV:
$$\chi = rac{\mathcal{A}(m_+^2,m_-^2)}{\mathcal{A}(m_-^2,m_+^2)}$$

