

Charmed Baryons

A Review of Doubly Charmed Baryons & New Results

Peter S. Cooper

Fermi National Accelerator Laboratory

Batavia, IL

Peter S. Cooper	ᄎ	Charm2007	1
Fermilad	- HF	Aug 5-8, 2006	

Double Charm Baryons: SU(4)

- QCD: isodoublet of (ccq) baryons
- Models agree: ground state ~3.5-3.6 GeV/c²
- Lattice concurs: Flynn, et al., hep-lat/030710

Peter S. Cooper		Charm2007	2
Fermilab	36	Aug 5-8, 2006	

Hunting for QQq Baryons

• Expect Cabibbo-favored ccq decay to lead to charm baryon + strange meson or charm-strange baryon + pion

• For Selex the Λ_c^+ dominates charm baryons; some Ξ_c^+ too, so it's natural to look for states like $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$, pD^+K^- , $\Xi_c^+ \pi^+ \pi^-$ for ccd, $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$, $\Xi_c^+ \pi^+ \pi^- \pi^-$ for ccu.

• Use standard single-charm cuts to select $\Lambda_{\rm c}{}^+$ - no optimization

• Reconstruct additional vertex between primary and charm vertices. No PID on K⁻ or π^-

•Expect combinatoric background when $L_1 \sim \sigma$

Peter S. Cooper Fermilab	*	Charm2007 Aug 5-8, 2006	3
-----------------------------	----------	----------------------------	---

Features of First Selex Ξ_{cc}^+ Observation

• First candidate for new baryon comes from baryon beam experiment:

- $\Xi_{cc}^{+}(ccd) \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+}$ Cabibbo-favored spectator mode
- State seen from $\Sigma^{\text{-}},\,p$ but not $\pi^{\text{-}}$
- Lifetime is very short <35 fs at 90% confidence. Disagrees with prediction from HQ single charm lifetime hierarchy.
- Cross section is *large*! Involves 40% of Selex Λ_c^+ production. Fragmentation predictions are much, much, smaller.
- Anomalously large charmed baryon yield in a hyperon beam (WA62) is why we did Selex in the first place.

Phys Rev Lett 89 (2002)112001

Peter S. Cooper Fermilab	*	Charm2007 Aug 5-8, 2006	
-----------------------------	---	----------------------------	--

Improved Selex Background Analysis

• Short lifetime for $\Xi_{cc}^+ \Rightarrow$ dominant background is combinatoric but low – hard to pin down exact shape from data sample. Absolutely normalized combinatoric background by event mixing

- Select Λ_c^+ reconstructions from events having no Ξ_{cc}^+ candidates
 - Take opposite-sign track pairs ($K^- \pi^+$) from different events
 - Build statistics by re-using each Λ_c^+ 25 times and renormalizing output mass plot to reflect this.
- This method can be applied to any final state dominated by combinatoric background and always has absolute normalization no adjustments.

Peter S. Cooper Fermilab	4	Charm2007 Aug 5-8, 2006	5

Application: New $\Xi_{cc}^{+} \rightarrow pD^{+}K^{-}$ Decay Mode

• $\Xi_{cc}^{+} \rightarrow pD^{+}K^{-}$ is quark rearrangement from $\Lambda_{c}^{+}K^{-}\pi^{+}$

- Q-value of decay is smaller than that for $\Lambda_c^{+}K^{-}\pi^{+} \Rightarrow$ lower rate
- Check physics background with wrong sign $pD^{\text{-}}K^{\text{+}}$ no peaks
- Event-mixed background (green) matches background fit to data (solid line) – confirms signal.
- Mass matches within 1 MeV of $\Lambda_c^{\,+}\,K^{\text{-}}\,\pi^{\text{+}}$ value

Phys. Lett. B628(2005) 18

Peter S. Cooper	光	Charm2007	6
Fermilab	¥	Aug 5-8, 2006	

Combined Ξ_{cc}^+ Distributions

Peter S. Cooper Fermilab	축	Charm2007 Aug 5-8, 2006	7

Peter S. Cooper Fermilab

• Have ccu excited state like Λ_c^{+*} .

 Combinatoric background from event mixing (green) describes background well in shape and normalization.

- See broad structure at 3780 MeV/c² - wider than resolution.
- state from Σ^{-} beam. No new cuts.
- (We actually found this one first)
- Q=2 candidates in $\Lambda_c^+ K^- \pi^+ \pi^+$ final 12 Events/15 MeV/c²

Doubly Charged Double Charm: $\Xi_{cc}^{++}(3780)$

Charm2007

Aug 5-8, 2006

More About the $\Xi_{cc}^{++}(3780)$

- If it's an excited state, is there a chain decay? Look for $\Xi_{cc}{}^{+\!+\!*}\!\to\Xi_{cc}{}^+\pi^+$

PRELIMINARY EVIDENCE: All the Ξ_{cc}^{++} signal events can be accounted for by chain decays.

• Much more work needs to be done to understand this state, but double charm system seems to follow baryon excitation dynamics with pion chain decays.

Peter S. Cooper Fermilab	*	<i>Charm2007</i> <i>Aug 5-8, 2006</i>	9

Search for $\Xi_{cc}^{+} \rightarrow \Xi_{c}^{+} \pi^{-} \pi^{+}$ Decay Mode

• Selex first observed Cabibbosuppressed decay $\Xi_c^+ \rightarrow pK^-\pi^+$

2.4

Ibrahim Torres UA San Luis Potosi (Mexico)

2.5

Mass $pK\pi^+$ [GeV/c²]

- This Ξ_c^+ mode has excellent momentum resolution – good to use in vertexing.
- Just like in Λ_{c}^{+} case, proton and kaons are RICH-identified
- Cabibbo-suppressed mode: more background.

 $\Xi_c^+ \rightarrow pK^-\pi^+$ Entries per 5 MeV/c² ALLCHAN 2458. χ^2/ndf 37.20 / 35 P1 89.23 ± 21.55 2.465 ± 0.1299E-02 P2 0.1226E-02 0.5544E-02 + P3 P4 57.80 ± 1.294 -102.1 ± 20.71 40 20 0

2.45

2.55

The $\Xi_{cc}^{+} \rightarrow \Xi_{c}^{+} \pi^{-} \pi^{+}$ Signal

- Make reconstruction. No new cuts on tracks. Vertex significance > 0
- Another narrow peak
 ~3520 MeV/c² Width agrees with MC calculation.
- Event-mixed background (green) describes sidebands well.
- Cabibbo-suppressed mode: more background.

Peter S. Cooper Fermilab	*	<i>Charm2007 Aug 5-8, 2006</i>	11

Recent Analysis Developments

- Double charm analysis is 'statistics-challenged' few events
- Recent tracking and other improvements raise single charm yields by 50% [e.g. N(Λ_c^+) 1630 \rightarrow 2450]

•We understand double charm background well (event mixing)

• Possible New Analysis Choice - relax cuts to accept more background but increase signal

• Also improve fit on Ξ_{cc}^{+} vertex for lifetime studies

Peter S. Cooper	犬	Charm2007	12
Fermilab	¥	Aug 5-8, 2006	

${\Xi_{cc}}^+$ Lifetime Study

- Experimental Problem: $c\tau \sim \sigma$... events go away by 4 σ
- Decay curve measured in 10 fs bins!
- Plot proper time for events in same mass band from signal and sideband
- Uncorrected lifetime always too long because of selection cuts
- Use MC to get true lifetime
- \bullet Detection efficiency goes down with $\tau.$
- Corrected Lifetime $15^{+10}_{-??}$ fs.
- Still can't exclude $\tau=0$.

Peter S. Cooper	-#+	Charm2007	13
Fermilab	¥	Aug 5-8, 2006	

Selex Doubly Charmed Baryons ~2003

 $\Lambda_c^+ K^- \pi^+ \pi^+$

 $\Lambda_{a}^{+} \mathrm{K}^{-} \pi^{+} \pi^{+}$

 $L/\sigma > .25$

 $\cos\theta_{\rm K}^{*}\cos\theta_{\Lambda} < -.25$

Poisson Prob

< 5 x 10⁻³

3.45

3.5 3.55

 $\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}$

 $\cos(\theta_{K}^{*}) > -.6$

3.5

3.55 3.6

36

signal/bkg

7.4/1.6

peak: 3780 MeV/c²

sig/bkg 31/31

3.5 3.6 3.7 3.8 3.9 $M(\Lambda_{a}^{\dagger} K \pi^{\dagger} \pi^{\dagger}) GeV/c^{2}$

Mass 3541 MeV/c²

3.35 3.4

RIGHT-SIGN

signal/√(back)

 $7.1/\sqrt{(.9)} = 7.5\sigma$

Poisson Prob

0 3.3 3.35 3.4 3.45

< 10

Mass 3460 MeV/c²

Data

10

0 3.4

1

0

2

1

Working Without a Net

- Selex has seen and known about these states for 5+ years
- No one else sees them.
 - Babar & Belle enthusiastically report their non-observations
 - Nothing seen in Focus (photo-production) or E791 (π^{-} beam)
 - CDF & D0 are awash in combinatorics (τ [B] ~ 1400 fs)
 - No new opportunities until LHCb
- Selex has chosen to proceed very slowly, with extreme caution. Confirm, confirm, confirm (e.g. 3 modes)
- The damned things won't go away! They keep reappearing.
- An now for something completely (nearly) the same :) .

Peter S. Cooper	共	Charm2007	15
Fermilab	÷	Aug 5-8, 2006	

Where is the Ξ_{cc}^{++} (ccu) ground state?

- Ξ_{cc}^{++} (ccu) [3780] isn't it (too wide too high)
- Look in $\Xi_{cc}^{++}(ccu) \rightarrow \Lambda_c^{+}K^{-}\pi^{+}\pi^{+}, \ \Xi_c^{+}\pi^{+}\pi^{+}\pi^{-}$
- Apply all the same techniques to 3 prong vertices
 - \bullet daughter charmed baryon mass within 20 MeV/c^2
 - L / σ (ccu) > {1, 1.25} , {7, 10} < L/ σ (cu{d,s}) < 20
 - P_t(ccu) > 0.2 GeV/c
 - Suppress events with more than one ccu track combo
- Lifetime guess from L/ σ looks "larger" than $\,\Xi_{\rm cc}{}^{+}$

Mode	$\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}$	$\Xi_{c}^{+}\pi^{+}\pi^{+}\pi^{-}$	Combined
M [MeV/c ²]	3452(3.4)	3451(3.8)	3542(2.5)
Sig / Bkg	14 / 9	10.2 / 3.8	26 / 14
Gaussian Sig.	4.2 σ (4.6)	3.8 σ (4.2)	6.1σ
Poisson excess	<6.5 x 10 ⁻⁵	<3.6 x 10 ⁻⁴	<1.1x10 ⁻⁸

Jim Russ (spokesman) CMU

Charm2007 Aug 5-8, 2006

Ξ_{cc}^{++} (ccu) ground state II

- We see the state we saw in 2003 again without any "additional cuts". 2 mode with a consistent mass
- Combined Poisson excess prob is 1.1x10⁻⁸
- All different events, analysis done twice.

Physics

- Isospin splitting is 67 ± 3 MeV ??? Must be 2 isodoublets
- => $\Xi_{cc}^+(3519)$ is not a ground state
- Why do we see it as a weak decay?
- ⇒ photon emission highly suppressed (2γ) [remember 2S→1S Hydrogen?]
- There must be 2 more states to find.
- This spectroscopy is interesting!

Peter S. Cooper		Charm2007
Fermilab	÷	Aug 5-8, 2006

Selex $\Lambda_c^+ \rightarrow \Lambda^0(1520) e^+ \nu l$

- Search for $\Lambda_c^+ \rightarrow \Lambda^0(1520)e^+\nu$, $\Lambda^0(1520) \rightarrow pK^-$
- Technique
 - Matched pK⁻π⁺& pK⁻e⁺ samples
 - •K⁻ + pe⁺ event mixing for combinatoric backgrounds
 - e⁺ PID with TRDs (E715 $\Sigma^{\text{-}} \beta$ decay TRDs)
 - Remove $\phi^0 \rightarrow K^+K^- \& \Xi^0(1690) \rightarrow \Sigma^+K^$ reflections
 - Yield before eTRD is $193 \pm 43 \text{ pK}^-\text{e}^+$ events \downarrow 1461±83 $\Lambda_c^+ \rightarrow \text{pK}^-\pi^+$ events.

SELEX

Jorge Amaro & Jurgen Engelfried UA San Luis Potosi (Mexico)

Selex $\Lambda_c^+ \rightarrow \Lambda^0(1520) e^+ \nu$ II

- Background subtracted weighted yield is 143 ± 12 events.
- Relative mode efficiency is 1.213 ± 0.012
- After correcting for efficiency and $Br[\Lambda^0(1520) \rightarrow pK^-] = 24.34\%$ we get:

 $Br[\Lambda_{c}^{+} \rightarrow \Lambda^{0}(1520)e^{+}\nu] = 3.04 \pm 0.62 \pm 0.79\%$

1.44 ± 0.34 times $Br[\Lambda_c^+ \rightarrow \Lambda^0 e^+ \nu]$

• More than just combinatoric backgrounds. Other excited states?

• $\Lambda_c^+ \rightarrow \Lambda^0(1520)\mu^+\nu$ and other excited states are still under study

Preliminary

SELEX

Summary I

- Double charm is here to stay
 - Selex has seen 3 double charmed baryon states in 3, 1 and 2 decay modes.
 - $\Xi_{cc}^{+}(3520)$ seen decaying into three different single charm states.
 - $\Xi_{cc}^{++}(3780)$ excited state shows chain decay via pion emission.
 - $\Xi_{cc}^{++}(3452)$ ground state observed in two different decay modes. Splitting is too large (67 MeV) for this state to sensibly be the isospin partner of the $\Xi_{cc}^{++}(3519)$. Radiative decays are suppressed?
 - This logic requires at least two more weakly decaying states, the isospin partners of the $\Xi_{cc}^{++}(3452)$ ground state and the partner of the EM decay suppressed $\Xi_{cc}^{++}(3519)$.
 - Selex has some hints of these but makes no claims now.
 - No report yet on the third double charm baryon, the $\Omega_{cc}^{+}(ccs)$

Peter S. Cooper Fermilab	*	Charm2007 Aug 5-8, 2006	20
		—	

Summary II

- Double charm production comes only from baryon-baryon interactions with VERY large cross section totally inconsistent with fragmentation production.
- Double charm baryons NOT seen in fragmentation processes at Belle, BaBar, γ or π^- production consistent with Selex baryon-only production.
- If this is correct LHCb should make these states copiously. If they trigger on them they should see them.
- Λ_c⁺ Semi-leptonic decay to excited state seen and measured 143 ± 12 events seen Br[Λ_c⁺ → Λ⁰(1520)e⁺v] = 3.04 ± 0.62 ± 0.79%
- Both charmed baryon physics and Selex are far from being finished or becoming uninteresting

Ok Galik - let's see if I can dodge the fruit

Selex group meeting @ UASLP June 2006

Peter S. CooperCharm2007FermilabAug 5-8, 2006