Charmonium from Lattice QCD

Jo Dudek

Jefferson Lab / Old Dominion University

Charm '07-Cornell

DMINION
UNIVERSITY

'parameters' of a lattice computation

\bulletdiscretised charm \& light quark actions

- various varieties available (clover, Fermilab scheme, domain-wall, overlap, staggered, HISQ, ...)
- lattice spacing a (might be differing a_{s}, a_{t}) - $a \rightarrow 0$ desired
- certain actions designed to speed this approach, e.g. domain-wall fermions: $X(a)=X(0)+O\left(a^{2}\right)$
- current lowest $\sim 0.06 \mathrm{fm}$ - perform extrapolations
- mass of light \& strange quarks 'in the sea', $m_{q, s}-m_{q} \rightarrow m_{q}^{\text {phys }} \sim 0$ desired
- dynamical lattices, current lowest $m_{\pi} \sim 200 \mathrm{MeV}$
- quenched lattices neglect these quarks altogether
volume of spatial lattice box, $L^{3}-L \rightarrow \infty$ desired
- sensitivity to this depends upon the states under study
- inclusion of disconnected diagrams (OZI)
- usually just connected diagrams - effects probably small

which quantities can be computed?

"easy" \& approaching maturity:

- spectrum of states below open charm decay threshold
- leptonic decay constantsrelatively "easy" but only recently begun:
- radiative transitions between charmonium states
- two-photon decays of charmonium states"hard":
- hadronic decays of charmonia
- accurate determination of state masses above threshold when they can decay

lightest five states

:
have been studied the most
relatively easy to extract

$$
\left\langle\mathcal{O}_{f} \mathcal{O}_{i}\right\rangle=\sum_{N} \frac{\langle 0| \mathcal{O}_{f}|N\rangle\langle N| \mathcal{O}_{i}|0\rangle}{2 m_{N}} e^{-m_{N} t}
$$

- use simple interpolators
- can get masses and leptonic decay constants
relative ease of computation means can devote effort to dealing with lattice systematics many groups have worked on this - no time to summarise them all
- a single recent example: Phys.Rev.D75:054502,2007 (HPQCD \& UKQCD)
- highly improved action (small effect in extrapolating $a \rightarrow 0$)
- fine dynamical lattice $a \sim 0.09 \mathrm{fm}, m_{\pi} \sim 250 \mathrm{MeV}$
- decay constant analysis is underway (C.Davies private communication)

higher spectrum

\bullet
higher spectrum results not at the same level of 'minimised' lattice systematics need larger set of interpolating fields (to get spin ≥ 2 and exotics)

- e.g. derivative based operators

```
立\Gamma\psi
```

recent study in quenched lattice QCD

- somewhat improved Clover action
- anisotropic lattice action $a_{s}=3 a_{t}$
- establish if sophisticated analysis method can extract multiple excited states from lattice correlators

excited states

-

an example of the difficulty in analysisthe charmonium vector channel below and close to threshold:

3770

3686
near deg. states are tough to fit
a
a cubic lattice
37703^{--}
3686

3097

$$
T_{1}^{--}=(1,3,4 \ldots)^{--}
$$need a reliable excited state extraction procedure

- variational method utilises the orthogonality of states

excited states

first results are promising
arXiv:0707.4162v1 [hep-lat] 27 Jul 2007
Charmonium excited state spectrum in lattice QCD

$P C=--$

[quenched \& a $=0$ 0]

Jefferson Lab
.Thomas Jefferson National Accelerator Facility

$P C=++$

[quenched \& a $=0$ 0]

PC = +-

[quenched \& a $=0$ 0]

$P C=-+$

[quenched \& a $=0$ 0]

naive analysis puts
states in lowest spin

other lattice studies claim a I^{-+}near 4300 MeV

$P C=-+$

[quenched \& a $=0$ 0]

equally plausible to assign the lightest state to be non-exotic 4^{-+}
exotic

then the exotic I^{-+}is heavier ($>4600 \mathrm{MeV}$)

radiative transitions

-

real photon transitions $\left(Q^{2}=0\right)$
lattice method will yield transition form-factors (at multiple Q^{2})
will extrapolate back to $Q^{2}=0$

PHYSICAL REVIEW D 73, 074507 (2006)
Radiative transitions in charmonium from lattice QCD
Jozef J. Dudek,* Robert G. Edwards, and David G. Richards
Jefferson Laboratory Mail-Stop 12H2, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA (Received 17 January 2006; published 20 April 2006)

radiative transitions

\bullet
extract from three-point functions involving the vector current

$$
\begin{aligned}
\Gamma\left(t_{f}, t ; \vec{p}, \vec{q}\right)= & \sum_{\vec{x}, \vec{y}} e^{-i \vec{p} \cdot \vec{x}} e^{i \vec{q} \cdot \vec{y}}\left\langle\varphi_{f}\left(\vec{x}, t_{f}\right) j^{\mu}(\vec{y}, t) \varphi(\overrightarrow{0}, 0)\right\rangle \\
\sim \sum_{n, m} e^{-E_{f_{n}}\left(t_{f}-t\right)} & \langle 0| \varphi_{f}(0)\left|f_{n}(\vec{p})\right\rangle \\
& \times\left\langle f_{n}(\vec{p})\right| j^{\mu}(0)\left|i_{m}(\vec{p}+\vec{q})\right\rangle \\
& \times\left\langle i_{m}(\vec{p}+\vec{q})\right| \varphi_{i}(0)|0\rangle e^{-E_{i_{m}} t}
\end{aligned}
$$

overlaps and energies come from the spectrum analysis (two-point functions)matrix element related to the decay width

- e.g. $\mathrm{J} / \psi \rightarrow \eta_{c} \gamma$

$$
\begin{aligned}
& \left\langle\eta_{c}\left(\vec{p}^{\prime}\right)\right| j^{\mu}(0)|\psi(\vec{p}, r)\rangle=\frac{2 V\left(Q^{2}\right)}{m_{\eta_{c}}+m_{\psi}} \epsilon^{\mu \alpha \beta \gamma} p_{\alpha}^{\prime} p_{\beta} \epsilon_{\gamma}(\vec{p}, r) \\
& \Gamma\left(\psi \rightarrow \eta_{c} \gamma\right)=\alpha_{\mathrm{em}} \frac{|\vec{q}|^{3}}{\left(m_{\eta_{c}}+m_{\psi}\right)^{2}} \frac{64}{27}|\hat{V}(0)|^{2}
\end{aligned}
$$

$J / \Psi \rightarrow \eta_{c} Y$ transition

statistically most precise channel, but very sensitive to the hyperfine splitting which is not correct on this quenched lattice ($\delta m_{\text {lat. }} \approx 80 \mathrm{MeV}, \delta m_{\text {expt. }} \approx 117 \mathrm{MeV}$)

the Crystal Ball experimental value needs confirmation ${ }^{Q^{2}\left(G e V^{2}\right)}$
all eyes turn to Matt Shepherd \& Ryan Mitchell at CLEO

$X_{c 0} \rightarrow J / \Psi \gamma E I$ transition

| P \rightarrow IS transitions

fit form inspired by potential models with spin-dependent corrections

$$
E_{1}\left(Q^{2}\right)=E_{1}(0)\left(1+\frac{Q^{2}}{\rho^{2}}\right) e^{-\frac{Q^{2}}{16 \beta^{2}}}
$$

$$
\begin{aligned}
& \chi_{c 0} \rightarrow J / \psi \gamma_{E 1} \\
& \beta=542(35) \mathrm{MeV} \\
& \rho=1.08(13) \mathrm{GeV}
\end{aligned}
$$

$$
\begin{aligned}
& \chi_{c 1} \rightarrow J / \psi \gamma_{E 1} \\
& \beta=555(113) \mathrm{MeV} \\
& \rho=1.65(59) \mathrm{GeV}
\end{aligned}
$$

simplest quark model has all β equal and $\rho\left(X_{c 0}\right)=2 \beta, \quad \rho\left(X_{c l}\right)=\sqrt{ } 2 \cdot \rho\left(X_{c 0}\right), \quad \rho\left(h_{c}\right) \rightarrow \infty$

two-photon decays

this is non-trivial in Euclidean lattice QCD

- the photon is not an eigenstate of QCD
- how do we 'make' one on the lattice
- solution is to realise that it is a suitable sum of QCD eigenstates
- like a 'vector dominance' picture
- exactly expressed in the LSZ reduction of field theoryexplained carefully in Ji \& Jung PRL86, 208 \& Dudek \& Edwards PRL97, 17200 I
$\left\langle\gamma\left(q_{1}, \lambda_{1}\right) \gamma\left(q_{2}, \lambda_{2}\right) \mid M(p)\right\rangle=$

$$
\begin{gathered}
-\lim _{\substack{q_{1}^{\prime} \rightarrow q_{1} \\
q_{2}^{\prime} \rightarrow q_{2}}} \epsilon_{\mu}^{*}\left(q_{1}, \lambda_{1}\right) \epsilon_{\nu}^{*}\left(q_{2}, \lambda_{2}\right) q_{1}^{\prime 2} q_{2}^{\prime 2} \int d^{4} x d^{4} y e^{i q_{1}^{\prime} \cdot y+i q_{2}^{\prime} \cdot x}\langle 0| T\left\{A^{\mu}(y) A^{\nu}(x)\right\}|M(p)\rangle \\
\rightarrow e^{2} \epsilon_{\mu}^{(1) *} \epsilon_{\nu}^{(2) *} \int d^{4} y e^{-i q_{1} \cdot y}\langle 0| T\left\{j^{\mu}(0) j^{\nu}(y)\right\}|M(p)\rangle
\end{gathered}
$$

- the 'extra' integral becomes a sum of a correlator over timeslices on the lattice

two-photon decays

- integrand is peaked and can be summed
- result is the form-factor for $\eta_{c} \rightarrow \gamma \gamma^{*}$

Jefferson Lab

PRL 97, 172001 (2006)
6)

What can lattice do for the onia?

:a lot, in principle but it is a long way behind established techniques like potential models many lattice groups calculate charmonium spectrabut not all are primarily interested in charmonium physics

- use 'precise' comparison with the lower part of the spectrum to'set the charm quark mass for D-meson flavor physics
smaller number of groups trying to compute quantities beyond the spectrum
new techniques take time to get working
- will initially not use "the best lattice systematics"
- US lattice groups have to beg for computing time every year
- decided by a committee of lattice QCD theorists
- explicit support from experimentalists is always helpful
- if you think we're computing the right quantities and want better calculations, please cite us

Manke \& Liao

8
earlier study with similar operatorsless sophisticated analysis
somewhat heavier I^{-+}reported

lattice technique

fairly straightforward application of three-point correlators

- similar to pion, proton form-factor, $\mathrm{N} \leftrightarrow \Delta$... calculations
- compute three-point functions with sequential-source technology
- completely specify the sink (operator \& momentum)
- can insert any momentum

- obtain correlators at various values of photon Q^{2}

radiative transitions

$:$
usually expressed in terms of multipoles covariant expressions can be derived

- e.g. $\mathrm{X} \subset 0 \rightarrow \mathrm{~J} / \psi \gamma$
$\begin{aligned}\left\langle\chi_{c 0}\left(\vec{p}_{\chi}\right)\right| V^{\mu}(0)\left|\psi\left(\vec{p}_{\psi}, r\right)\right\rangle=\Omega^{-1}\left(Q^{2}\right) & \left(E_{1}\left(Q^{2}\right)\left[\Omega\left(Q^{2}\right) \epsilon^{\mu}\left(\vec{p}_{\psi}, r\right)-\epsilon\left(\vec{p}_{\psi}, r\right) \cdot p_{\chi}\left(p_{\chi} \cdot p_{\psi} p_{\psi}^{\mu}-m_{\psi}^{2} p_{\chi}^{\mu}\right)\right]\right. \\ & \left.+\frac{C_{1}\left(Q^{2}\right)}{\sqrt{Q^{2}}} m_{\psi} \epsilon\left(\vec{p}_{\psi}, r\right) \cdot p_{\chi}\left[p_{\chi} \cdot p_{\psi}\left(p_{\chi}+p_{\psi}\right)^{\mu}-m_{\chi}^{2} p_{\psi}^{\mu}-m_{\psi}^{2} p_{\chi}^{\mu}\right]\right)\end{aligned}$
- the multipole form-factors can be obtained from the three-point functions as an overconstrained linear problem
- need the E's and Z's from two point function fits
- deals with all the data at a given Q^{2} simultaneously - in principle can simultaneously extract excited state transitions

$$
\Gamma\left(p_{f}, p_{i} ; t\right)=\sum_{n} P\left(p_{f}, p_{i} ; t\right) \cdot K_{n}\left(p_{f}, p_{i}\right) \cdot f_{n}\left(Q^{2}\right)
$$

$$
P=\frac{Z_{f} Z_{i}}{4 E_{f} E_{i}} e^{-E_{f} t_{f}} e^{-\left(E_{i}-E_{f}\right) t}
$$

$$
\left[\begin{array}{l}
\Gamma(a ; t) \\
\Gamma(b ; t) \\
\Gamma(c ; t)
\end{array}\right]=\left[\begin{array}{ll}
P(a ; t) K_{1}(a) & P(a ; t) K_{2}(a) \\
P(b ; t) K_{1}(b) & P(b ; t) K_{2}(b) \\
P(c ; t) K_{1}(c) & P(c ; t) K_{2}(c)
\end{array}\right.
$$

first results

!
quenched, anisotropic lattice
$a_{s}=0.1 \mathrm{fm}, \xi=3.0,12^{3} \times 48$
domain wall fermions ($L_{5}=16$)

- charm quark mass tuning is not perfect (5\% low)ground state to ground state transitions only

PHYSICAL REVIEW D 73, 074507 (2006)
Radiative transitions in charmonium from lattice QCD
Jozef J. Dudek,* Robert G. Edwards, and David G. Richards
Jefferson Laboratory Mail-Stop 12H2, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA
(Received 17 January 2006; published 20 April 2006)

$X_{c ı} \rightarrow J / \Psi \gamma$ transition

\bullet
derived the covariant multipole decomposition

$$
\left\langle A\left(\vec{p}_{A}, r_{A}\right)\right| j^{\mu}(0)\left|V\left(\vec{p}_{V}, r_{V}\right)\right\rangle=\frac{i}{4 \sqrt{2} \Omega\left(Q^{2}\right)} \epsilon^{\mu \nu \rho \sigma}\left(p_{A}-p_{V}\right)_{\sigma} \times
$$

$\times E_{1}\left(Q^{2}\right)\left(p_{A}+p_{V}\right)_{\rho}\left(2 m_{A}\left[\epsilon^{*}\left(\overrightarrow{p_{A}}, r_{A}\right) \cdot p_{V}\right] \epsilon_{\nu}\left(\overrightarrow{p_{V}}, r_{V}\right)+2 m_{V}\left[\epsilon\left(\vec{p}_{V}, r_{V}\right) \cdot p_{A}\right] \epsilon_{\nu}^{*}\left(\vec{p}_{A}, r_{A}\right)\right)$
$+M_{2}\left(Q^{2}\right)\left(p_{A}+p_{V}\right)_{\rho}\left(2 m_{A}\left[\epsilon^{*}\left(\overrightarrow{p_{A}}, r_{A}\right) \cdot p_{V}\right] \epsilon_{\nu}\left(\overrightarrow{p_{V}}, r_{V}\right)-2 m_{V}\left[\epsilon\left(\overrightarrow{p_{V}}, r_{V}\right) \cdot p_{A}\right] \epsilon_{\nu}^{*}\left(\vec{p}_{A}, r_{A}\right)\right)$
$+\frac{C 1\left(Q^{2}\right)}{\sqrt{q^{2}}}\left(-4 \Omega\left(Q^{2}\right) \epsilon_{\nu}^{*}\left(\vec{p}_{A}, r_{A}\right) \epsilon_{\rho}\left(\vec{p}_{V}, r_{V}\right)\right.$
$\left.\left.+\left(p_{A}+p_{V}\right)_{\rho}\left[\left(m_{A}^{2}-m_{V}^{2}+q^{2}\right)\left[\epsilon^{*}\left(\vec{p}_{A}, r_{A}\right) \cdot p_{V}\right] \epsilon_{\nu}\left(\vec{p}_{V}, r_{V}\right)+\left(m_{A}^{2}-m_{V}^{2}-q^{2}\right)\left[\epsilon\left(\vec{p}_{V}, r_{V}\right) \cdot p_{A}\right] \epsilon_{\nu}^{*}\left(\overrightarrow{p_{A}}, r_{A}\right)\right]\right)\right]$.

- $E_{l}\left(Q^{2}\right)$ - electric dipole - experimentally measured at $Q^{2}=0$$M_{2}\left(Q^{2}\right)$ - magnetic quadrupole - experimentally measured (via photon angular dependence) at $Q^{2}=0$$C_{l}\left(Q^{2}\right)$ - longitudinal - goes to zero at $Q^{2}=0$this lattice $\delta m\left(X_{c l}-J / \Psi\right)$ close to experiment, so small phase-space ambiguity

$X_{c l} \rightarrow J / \Psi \gamma$ transition

no $Q^{2}<0$ points owing to kinematical structure of matrix element

sem
DOMINION
UNIVERSITY

