Four-body charm semileptonic decay

Jim Wiss
University of
Illinois

1. Vector dominance
2. Expected decay intensity
3. $\mathrm{SU}(3)$ applied to $\mathrm{D}_{\mathrm{s}} \rightarrow \phi \mid v$
4. Analytic forms for form factors
5. Non-parametric form factors
6. Future directions

Very heavily dominated by vector resonances

Decay described by 3 "helicity" form factors. One for each vector helicity component

$$
|\mathrm{A}|^{2}=\frac{q^{2}}{8}\left|\begin{array}{l}
\left(1+\cos \theta_{l}\right) \sin \theta_{V} e^{i \chi} H_{+} \\
-\left(1-\cos \theta_{l}\right) \sin \theta_{V} e^{-i \chi} H_{-} \\
-2 \sin \theta_{l} \cos \theta_{V} H_{0}
\end{array}\right|^{2}
$$

Intensity given by 3 interfering amplitudes

Form of the helicity form factors

Helicity form factors written in terms of axial and vector form factors

Analyticity provides insight into $V\left(q^{2}\right)$ and $A\left(q^{2}\right) \ldots$

Cauchy Theorem

Spectroscopic approach (SPD) ignores cut integral completely

$$
V\left(q^{2}\right)=\frac{V(0)}{1-q^{2} / 2.1^{2}} \quad A_{1,2}\left(q^{2}\right)=\frac{A_{1,2}(0)}{1-q^{2} / 2.5^{2}}
$$

Under SPD , just two numbers describe angular distribution

$\frac{d \Gamma}{d \cos \theta_{\mathrm{v}} \times d \cos \theta_{\ell} \times d \chi \times d q^{2}}$
$\propto F\left(\cos \theta_{\mathrm{v}}, \cos \theta_{\ell}, \chi, q^{2} ; R_{V}, R_{2}\right)$
$R_{V}=\frac{V(0)}{A_{1}(0)}$ and $R_{2}=\frac{A_{2}(0)}{A_{1}(0)} 3$

Example of SPD approach

E831

20 years of fits to $D^{+} \rightarrow K^{*} \mid v$

Old results indicated a problem with $\operatorname{SU}(3)$ symmetry which is now appears resolved But we know SPD doesn't work for $\mathrm{D}^{0} \rightarrow \mathrm{Klv}$

How can it work for $\mathrm{D} \rightarrow \mathrm{K}^{*} I \vee$??

Two SPD "remedies"

Modified pole forms
$V\left(q^{2}\right)=\frac{\mathcal{R}}{m_{D^{*}}^{2}-q^{2}}$
$+\frac{1}{\pi} \int_{\left(m_{D}+K\right)^{2}}^{\infty} \frac{\operatorname{lm}\left\{f_{+}(s)\right\}}{s-q^{2}-i \varepsilon} d s$

Becirevic \& Kaidalov write integral as effective pole with $m_{\text {eff }}=\sqrt{\gamma} m_{D^{*}}$. $f_{+}\left(q^{2}\right)=\frac{c_{D} m_{D^{*}}^{2}}{m_{D^{*}}^{2}-q^{2}}-\frac{\alpha \gamma c_{D} m_{D^{*}}^{2}}{\gamma m_{D^{*}}^{2}-q^{2}}$
HQET\&SCET \Rightarrow Res \& Pole $\alpha=1 / \gamma$
$\Rightarrow f_{+}\left(q^{2}\right)=\frac{f_{+}(0)}{\left(1-q^{2} / m_{D^{*}}^{2}\right)\left(1-\alpha q^{2} / m_{D^{*}}^{2}\right)}$

The effective pole adds one new parameter α $\alpha \neq 0$ is SPD violation

Fajfer and Kamenik (2005) extended modified poles to vector decays

Hill transformation

†R.J. Hill hep-ph/0606023 (FPCP06)
R.J. Hill makes a complex mapping that pushes the cut singularities far from the physical q^{2} region.
$z\left(t, t_{0}\right) \equiv \frac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}}$
Form factors are then given by a simple Taylor series for $|z| \ll 1$ $P(t) \phi(t) \times f(z)=a_{0}+a_{1} z+\cdots$

Do we need these remedies in vector semileptonic decays?

Projecting out the helicity form factors

Averaging over acoplanarity χ we have: $|\mathcal{A}|^{2}=\frac{q^{2}}{8}\left\{\begin{array}{c}\left(\left(1+\cos \theta_{l}\right) \sin \theta_{v}\right)^{2}\left|H_{+}\left(q^{2}\right)\right|^{2} \\ +\left(\left(1-\cos \theta_{l}\right) \sin \theta_{v}\right)^{2}\left|H_{-}\left(q^{2}\right)\right|^{2} \\ +\left(2 \sin \theta_{l} \cos \theta_{v}\right)^{2}\left|H_{0}\left(q^{2}\right)\right|^{2}\end{array}\right\}$

7	8	9
0	5	6
0	2	2

$\cos V$
FF products are solutions to
$\vec{D}_{i}=f_{+}\left(q_{i}^{2}\right) \vec{m}_{+}+f_{-}\left(q_{i}^{2}\right) \vec{m}_{-}+f_{0}\left(q_{i}^{2}\right) \vec{m}_{0}$ and written as $f_{+}\left(q^{2}\right)=\vec{P}_{+} \cdot \vec{D} \ldots$

The helicity form factors are projected out based on angular bin populations

where the projection vectors are just:

$$
\left(\begin{array}{l}
\vec{P}_{+} \\
\vec{P}_{-} \\
\vec{P}_{0}
\end{array}\right)=\left(\begin{array}{lll}
\vec{m}_{-} \cdot \vec{m}_{+} & \vec{m}_{+} \cdot \vec{m}_{-} & \vec{m}_{+} \cdot \vec{m}_{0} \\
\vec{m}_{-} \bullet \vec{m}_{+} & \vec{m}_{-} \bullet \vec{m}_{-} & \vec{m}_{-} \bullet \vec{m}_{0} \\
\vec{m}_{0} \cdot \vec{m}_{+} & \vec{m}_{0} \cdot \vec{m}_{-} & \vec{m}_{0} \cdot \vec{m}_{0}
\end{array}\right)^{-1}\left(\begin{array}{l}
\vec{m}_{+} \\
\vec{m}_{-} \\
\vec{m}_{0}
\end{array}\right)
$$

$\Rightarrow H_{+}^{2}\left(q^{2}\right) \propto \vec{P}_{+} \cdot \vec{D}=\sum_{i} \vec{P}_{+}^{(i)} \vec{D}^{(i)} \therefore H_{+}^{2}\left(q^{2}\right)$ obtained from weighted histogram 6

Same approach can be used for hadronic decay

FOCUS used this technique to project out the S wave, P wave , and SP interference pieces of the $\mathrm{K} \pi$ amplitudes in $\mathrm{D}^{+} \rightarrow \mathrm{KK} \pi$ decay.

An S-wave D $\rightarrow \mathrm{K} \pi \mu \nu$ component

Although $K \pi$ line shape is a great match to pure BW...

$|\mathcal{A}|^{2}=\frac{1}{8} q^{2}\left\{\begin{array}{l}\left(\left(1+\cos \theta_{l}\right) \sin \theta_{V}\right)^{2}\left|H_{+}\left(q^{2}\right)\right|^{2}|B W|^{2} \\ +\left(\left(1-\cos \theta_{l}\right) \sin \theta_{v}\right)^{2}\left|H_{-}\left(q^{2}\right)\right|^{2}|B W|^{2} \\ +\left(2 \sin \theta_{l} \cos \theta_{V}\right)^{2}\left|H_{0}\left(q^{2}\right)\right|^{2}|B W|^{2} \\ +8\left(\sin ^{2} \theta_{l} \cos \theta_{V}\right) H_{0} h_{o}\left(q^{2}\right) \operatorname{Re}\left\{A e^{-i \delta} B W\right\}\end{array}\right\}$
Same helicity interference survives $\int \mathrm{d} \chi$
...FOCUS (2002) observed a $\boldsymbol{\operatorname { c o s }} \theta_{\mathrm{v}}$ decay asymmetry

$0.8<\mathrm{M}(\mathrm{K} \pi)<0.9 \mathrm{GeV} / \mathrm{c}^{2}$

We include the interference term by adding a 4th projector for $H_{0}\left(q^{2}\right) h_{0}\left(q^{2}\right)$ piece.
$\left(\begin{array}{l}\vec{P}_{+} \\ \vec{P}_{-} \\ \vec{P}_{0} \\ \vec{P}_{l}\end{array}\right)=\left(\begin{array}{llll}\vec{m}_{+} \cdot \vec{m}_{+} & \vec{m}_{-} \cdot \vec{m}_{-} & \vec{m}_{+} \cdot \vec{m}_{0} & \vec{m}_{+} \cdot \vec{m}_{l} \\ \vec{m}_{-} \bullet \vec{m}_{+} & \vec{m}_{-} \cdot \vec{m}_{-} & \vec{m}_{-} \cdot \vec{m}_{0} & \vec{m}_{-} \cdot \vec{m}_{1} \\ \vec{m}_{0} \cdot \vec{m}_{+} & \vec{m}_{0} \cdot \vec{m}_{-} & \vec{m}_{0} \cdot \vec{m}_{0} & \vec{m}_{0} \cdot \vec{m}_{1} \\ \vec{m}_{l} \cdot \vec{m}_{+} & \vec{m}_{l} \cdot \vec{m}_{-} & \vec{m}_{l} \cdot \vec{m}_{0} & \vec{m}_{l} \cdot \vec{m}_{l}\end{array}\right)^{-1}\left(\begin{array}{l}\vec{m}_{+} \\ \vec{m}_{-} \\ \vec{m}_{0} \\ \vec{m}_{l}\end{array}\right)$

We can measure $h_{0}\left(q^{2}\right)$ nearly as well as $H_{+}\left(q^{2}\right)$, Since interference term has odd parity and is \approx orthogonal to other projectors.

Non-parametric $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \mathrm{e}^{+} v$ Form Factors ($281 \mathrm{pb}^{-1}$)

We plot "intensity" contributions \rightarrow Multiply the FF products by q^{2}

Understanding the asymptotic forms

As $q^{2} \rightarrow 0$, the leptons become collinear

As $q^{2} \rightarrow q_{\text {max }}^{2}$, the W^{+}and K^{*} are at rest and no helicity axis can be defined \rightarrow isotropy

We thus expect...
 and observe:

Pole Mass Sensitivity in Data

Can we test SPD?
PLS CL= $0.243: 6.706 / 5$

PLS CL= $0.454: 4.694 / 5$

$V\left(q^{2}\right)=\frac{V(0)}{1-q^{2} / M_{V}^{2}}$
MIN CL=0.395:5.172/5

MIN CL= $0.748: 2.689 / 5$

ZER CL-0.592: 3.712/5

ZER CL-0.662: 3.246/5

Data fits spectroscopic poles and constant form factors equally well. \rightarrow No evidence for or against SPD.

Confirming the s-wave phase in $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \mathrm{e}^{+} v$

Search for D-wave K π

Add a D-wave projector

$$
\int|A|^{2} d \chi=\frac{q^{2}-m_{\ell}^{2}}{8}\left\{\begin{array}{l}
\left(\left(1+\cos \theta_{\ell}\right) \sin \theta_{\mathrm{V}}\right)^{2}\left|H_{+}\left(q^{2}\right)\right|^{2}|B W|^{2} \\
+\left(\left(1-\cos \theta_{\ell}\right) \sin \theta_{\mathrm{V}}\right)^{2}\left|H_{-}\left(q^{2}\right)\right|^{2}|B W|^{2} \\
+\left(2 \sin \theta_{\ell} \cos \theta_{\mathrm{V}}\right)^{2}\left|H_{0}\left(q^{2}\right)\right|^{2}|B W|^{2} \\
+8 \sin ^{2} \theta_{\ell} \cos \theta_{\mathrm{V}} H_{0}\left(q^{2}\right) h_{o}\left(q^{2}\right) \operatorname{Re}\left\{A e^{-i \delta} B W\right\} \\
+4 \sin ^{2} \theta_{\ell} \cos \theta_{\mathrm{V}}\left(3 \cos ^{2} \theta_{\mathrm{V}}-1\right) H_{0}\left(q^{2}\right) h_{o}^{(d)}\left(q^{2}\right) \operatorname{Re}\left\{A_{d} e^{-i \delta_{d}} B W\right\}
\end{array}\right.
$$

No evidence for $h_{D}\left(q^{2}\right) \propto \frac{1}{\sqrt{q^{2}}}$ or $h_{F}\left(q^{2}\right) \propto \frac{1}{\sqrt{q^{2}}}$

Preliminary Z transform of $K^{*} e v$ decay by Hill

Analysis of CLEO non-parametric data by R.J. Hill (private communication)

The z range is $4 \times$ smaller in $D \rightarrow K^{*} I v$, compared to $\mathrm{D} \rightarrow \mathrm{KIv} \rightarrow \mathrm{H}_{0}(\mathrm{z})$ will be essentially constant

Indeed the Hill- transformed H_{0} data seems nearly constant as a function of Z

Future: mass suppressed form factors

For $\mathrm{D}^{+} \rightarrow K^{-} \pi^{+} \mu^{+} v$ we can study $\mathrm{H}_{\mathrm{T}}^{2}\left(\mathrm{q}^{2}\right)$ and $\mathrm{H}_{\mathrm{T}} \times \mathrm{H}_{0}\left(\mathrm{q}^{2}\right)$
$|\mathrm{A}|^{2}=\frac{1}{8}\left(q^{2}-m_{l}^{2}\right)\left\{\left(\left.\begin{array}{l}\left(1+\cos \theta_{l}\right) \sin \theta_{V} e^{i x} H_{+} \\ -\left(1-\cos \theta_{l}\right) \sin \theta_{V} e^{-i x} H_{-} \\ -2 \sin \theta_{l}\left(\cos \theta_{V} H_{0}+A\right)\end{array}\right|^{2}+\left(\left.\begin{array}{l}\left.\frac{m_{\mu}^{2}}{q^{2}}\right)+\sin \theta_{l} \sin \theta_{V} e^{i x} H_{+} \\ +2 \sin \theta_{l} \sin \theta_{V} e^{-i \chi} H_{-} \\ +2 \cos \theta_{l} \cos \theta_{V} H_{0} \\ +2 \cos \theta_{V} H_{t}\end{array}\right|^{2}\right]\right.\right.$

We get both $h_{0} \mathrm{H}_{0}$ and $\mathrm{H}_{0} \mathrm{H}_{\mathrm{T}}$ interference \rightarrow six form factor products.

Perhaps it will look like the (FOCUS) model ?

Our prognosis for semimuonic decays looks good!

The best H_{T} information will come from the $\mathrm{H}_{0} \mathrm{H}_{\mathrm{T}}$ interference term.

Semimuonic decay should also improve knowledge other form factors along with additional data

Summary

1. All studied 4 body SL decays are heavily dominated by Vector I v

* Mostly described by just 3 helicity form factors

2. Recent Ds $\rightarrow \phi I v$ analysis of BaBar confirms that Ds also fits the SPD model for D+ $\rightarrow K^{*} I v$ to high precision.

* A nice test of $\mathrm{SU}(3)$ symmetry!

3. Non-parametric method for form factor extraction in $D+\rightarrow K^{*} e v$
a. Studies on the s-wave term in $D+\rightarrow K \pi e v$ (non-resonant).
i) First measurements of this new form factor $\mathrm{h} 0\left(\mathrm{q}^{2}\right)$
ii) Confirms FOCUS s-wave phase of 45 degrees
b. Present data consistent with SPD model (apart from s-wave?)
c. Little sensitivity to axial and vector poles $\mathrm{w} /$ present data
d. No evidence for d or f wave
e. Hill transform: $\mathrm{HO}(\mathrm{z})$ looks flat in z
f. Would like to extend studies to $\mathbf{D}+\rightarrow \mathbf{K} \pi \mu \nu$

Question slides

Angular distributions

$$
|\mathrm{A}|^{2}=\frac{1}{8}\left(q^{2}-m_{l}^{2}\right)\left\{\left(\left.\begin{array}{l}
\left(1+\cos \theta_{l}\right) \sin \theta_{V} e^{i x} H_{+} \\
-\left(1-\cos \theta_{l}\right) \sin \theta_{V} e^{-i \chi} H_{-} \\
-2 \sin \theta_{l}\left(\cos \theta_{V} H_{0}+A\right)
\end{array}\right|^{2}+\frac{m_{\mu}^{2}}{q^{2}}\left|\begin{array}{l}
\sin \theta_{l} \sin \theta_{V} e^{i \chi} H_{+} \\
+\sin \theta_{l} \sin \theta_{V} e^{-i \chi} H_{-} \\
+2 \cos \theta_{l} \cos \theta_{V} H_{0} \\
+2 \cos \theta_{V} H_{t}
\end{array}\right|_{18}^{2}\right\}\right.
$$

Cauchy Theorem

$\operatorname{lm}\{s\}$

Pole Dominance

<Mpole> is 5.1σ lower than $D_{s}{ }^{*}$

$f_{+}\left(q^{2}\right)=\frac{\mathcal{R}}{m_{D^{*}}^{2}-q^{2}}+\frac{1}{\pi} \int_{\left(m_{D^{+}} K\right)^{2}}^{\infty} \frac{\operatorname{Im}\left\{f_{+}(s)\right\}}{s-q^{2}-i \varepsilon} d s$
Fits to $f_{+}(0) \propto \frac{1}{m_{\text {pole }}^{2}-q^{2}} \quad \begin{aligned} & \Rightarrow \text { Integral term } \\ & \text { is important }\end{aligned}$
Becirevic \& Kaidalov write integral as effective pole with $m_{\text {eff }}=\sqrt{\gamma} m_{D^{*}}$
$f_{+}\left(q^{2}\right)=\frac{c_{D} m_{D^{*}}^{2}}{m_{D^{*}}^{2}-q^{2}}-\frac{\alpha \gamma C_{D} m_{D^{*}}^{2}}{\gamma m_{D^{*}}^{2}-q^{2}}$
HQET\&SCET \Rightarrow Res \& Pole $\alpha=1 / \gamma$
$\Rightarrow f_{+}\left(q^{2}\right)=\frac{f_{+}(0)}{\left(1-q^{2} / m_{D^{*}}^{2}\right)\left(1-\alpha q^{2} / m_{D^{*}}^{2}\right)}$

Fermilab Lattice, MILC, and HPQCD (2004)

BK expression is a good fit to 19 recent lattice calculations

R.J. Hill's ${ }^{\dagger}$ New Approach to $\mathrm{f}\left(\mathbf{q}^{\mathbf{2}}\right)$

Hill makes a complex mapping that pushes the cut singularities far from maximum \mathbf{q}^{2}.
$z\left(t, t_{0}\right) \equiv \frac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}}$
Form factors are given by a simple Taylor series for $|z| \ll 1$

$$
P(t) \phi(t) \times f(z)=a_{0}+a_{1} z+\cdots
$$

Illustrate with $\mathrm{B} \rightarrow \pi \mathrm{e} v$ data [$\mathrm{Hill}(06)]$

For $B \rightarrow \pi$: The cut is very close to the maximum q^{2} and
$\mathbf{f}_{+}\left(\mathbf{q}^{\mathbf{2}}\right) \rightarrow \infty$ as $\mathbf{q}^{\mathbf{2}} \rightarrow \mathbf{q}^{\mathbf{2}}{ }_{\text {max }}$
After z mapping, the physical and cut region are far apart. The $f_{+}(z)$ data is well fit with just a straight line as a polynomial.

Charm data?? \rightarrow

