Charm production at RHIC

1

A. G. Knospe Yale University

Charm 2007 Conference Cornell University, Ithaca, NY 5 August 2007

The Quark Gluon Plasma

A. G. Knospe Relativistic Heavy Ion Collider

TANDEMS

- 2 concentric rings
- 3.8 km circumference
- counter-circulating beams
- *p*, *p*↑: 5 GeV ≤ √s ≤ 500 GeV
- *d*, Cu, Au: 5 GeV $\leq \sqrt{s_{NN}} \leq 200$ GeV

 \bullet (N_{part} and N_{bin} from

Glauber model calculations)

Collision Geometry

- Centrality: overlap between nuclei
 - $-N_{part}$: number of participant nucleons
 - $-N_{bin}$: number of binary collisions
 - $N_{bin} \ge N_{part}/2$
 - Measured through:
 - charged particle multiplicity (N_{ch})
 - number of spectator neutrons

"Peripheral" Large distance between centers of nuclei N_{part}, N_{bin}, N_{ch} small

Collision Geometry

High- p_T Particle Suppression

- High-p_T (> 2 GeV/c) particles suppressed
- More suppression expected in central collisions
- Compare to p + p (no medium)
- Nuclear Modification Factor (R_{AA})
 - N_{bin}-scaled ratio of particle yields
 - No Medium Effect: $R_{AA} = 1$
 - (for $p_T > 2 \text{ GeV}/c$)

$$R_{AA}(p_T) = \frac{Yield(A+A)}{Yield(p+p) \cdot \langle N_{bin} \rangle}$$

- γ not suppressed
 - not strongly interacting
- Hadrons suppressed in central collisions
- Consistent with formation of QGP
- Other Tests: Jet
 Quenching, Elliptic Flow

Heavy Flavor and the QGP Yale University

- Heavy quarks produced in initial hard scattering of partons
 - Dominant: $gg \rightarrow QQ$
 - Production rates from pQCD
 - Sensitive to initial gluon distributions
- Heavy quark energy loss
 - Prediction: less than light quark energy loss (dead cone effect)

- Sensitive to gluon densities in medium
- Quarkonium Suppression

M.Djordjevic PRL 94 (2004)

7

Measuring Heavy Flavor

(B.R.: 10.9%)

- Study hadronic decays: $D^0 \rightarrow K\pi$, $D^* \rightarrow D^0\pi$, $D^{\pm} \rightarrow K\pi\pi$, $D_s^{\pm} \rightarrow \pi\phi$
- ... and semileptonic decays:
 - $c \rightarrow \mu^+$ + anything(B.R.: ~7%) $c \rightarrow e^+$ + anything(B.R.: 9.6%) $\bullet D^0 \rightarrow e^+$ + anything(B.R.: 6.87%)
 - $D^{\pm} \rightarrow e^{\pm}$ + anything (B.R.: 17.2%)
 - $b \rightarrow e^+ + anything$
 - $B^{\pm}, B^{0} \rightarrow e^{\pm}$ + anything (B.R.: 10.2%)
- Heavy flavor decays dominate non-photonic (single) e[±] spectrum; b decays dominate at high p_T
- Photonic e[±] background:
 - γ conversions ($\pi \rightarrow \gamma \gamma, \gamma \rightarrow e^+e^-$)
 - Dalitz decays of π^{0} , η , η'
 - ρ , ϕ , K_{e3} decays (small contributions)

Non-photonic e[±]

Remove Photonic e[±] Background

 Combine e[±] with oppositely charged tracks in same event; e[±] is background if M_{inv} < 150 MeV/c²

STAR: B. I. Abelev *et al*, Phys. Rev. Lett. **98** (2007) 192301 PHENIX: A. Adare *et al*, Phys. Rev. Lett. **98**, 172301 (2007)

- Simulate background e[±] from "cocktail" of measured sources (γ, π⁰, η, etc.)
- Measure *e*[±] with converter, extrapolate to 0 background PHENIX: Non-photonic e^{\pm} , $\sqrt{s_{NN}}$ =200 GeV 10³ [(GeV/c)⁻²)] 10^{2} **PH**^{*}ENIX 10-Au+Au: 10-4 0-92% 10-5 10-6 0-10% 10-7 10-20% 10-8 20-40% 10-40-60% 10⁻¹⁰ 60-92% 10-12 p+p10-13 Au+Au @ \s.... = 200 GeV 10-14 p_{_} [GeV/c]

Perturbative Calculations

101

 10^{0}

10-1

- Heavy quark production can be calculated perturbatively
- FONLL: Fixed-Order plus Next-Leading Log resummed
- At what p_{τ} do b decays begin to dominate?
 - Within 3 GeV/ $c < p_T < 10$ GeV/ $c < \frac{10}{2}$

Uncertainty bands

for e from heavy flavor:

√s_{NN} = 200 GeV

y < 0.75

 Azimuthal distribution of hadrons w.r.t. non-photonic e[±]

11

- *e*[±] can get bigger "kick" from *B* decay: broader same-side peak
- Also: e[±] correlation w/ identified D⁰ h correlations with non-photonic e[±]

2.5 < P_T(trig) < 3.5 GeV/c, P_T(asso) > 0.3 GeV/c γ^2 / ndf 53.31 / 61 **STAR Preliminary** 0.25 B/(B+D) 0.3251 ± 0.0518 N_{ch} N_{trig} 0. 0.05 GeV Ω 0 Δω

X. Lin, Strange Quark Matter Conference (2007)

- Azimuthal distribution of hadrons w.r.t. non-photonic e[±]
- e[±] can get bigger "kick" from B decay: broader same-side peak
- Also: e^{\pm} correlation w/ identified D^0 h correlations with non-photonic e^{\pm}

- PYTHIA Simulation: *D* and *B* contributions
- Fit determines *D* vs. *B* $\Delta \varphi_{fit} = (1 - R) \Delta \varphi_D + R \cdot \Delta \varphi_B$
- *B*-fraction consistent with FONLL

PHENIX: σ_{cc} from non-photonic e^{\pm}

non-photonic *e*[±] (TOF used)

covers ~95% of cross-section

charm produced in initial hard

STAR dAu

Phenix

AuAu MB

AuAu CT

pp (2006) pp (2006)

AuAu 0-10% (2002 AuAu MB (2002) AuAu MB (2005)

FONLL

No thermal production

 $STAR \sigma_{cc} > FONLL calculation$

d+Au

Au+Au A. Suaide, Quark Matter Conference (2006)

p+p

STAR: combined fit:

 $D^0 \rightarrow K\pi$

Scales with N_{bin} :

scattering

 μ^{\pm}

ر در 1200 bin 1000

500

Charm Cross Section

13

Nuclear Modification Factor

- *R_{AA}* for non-photonic *e*[±]:
 PHENIX consistent with STAR
- Similar to light hadron R_{AA}
- Models tend to under-predict suppression
- radiative and/or collisional energy loss are insufficient
- *b* only important at higher p_{τ} ?
- Collisional dissociation of heavy flavor mesons?
- Models still being refined

Light Hadron R_{AA}

$$R_{AA}(p_T) = \frac{Yield(A+A)}{Yield(p+p) \cdot \langle N_{bin} \rangle}$$

PHENIX: PRL 98 (2007) 172301 STAR: PRL 98 (2007) 192301 Adil and Vitev, Phys. Lett. B 649 (2007) 139

Summary and Outlook

- Charm Cross-Section
 - $c\overline{c}$ production scales as N_{bin}
 - Indicates charm production in initial state
 - STAR disagrees with PHENIX and FONLL calculations
- Non-photonic $e^{\pm} R_{AA}$
 - Suppression similar to light hadrons
 - Difficult for models to describe
- *e*[±]-*h* correlations
 - *b*-fraction consistent with FONLL

For more information about heavy-ion physics, visit http://www.bnl.gov/RHIC/

Summary and Outlook

- Charm Cross-Section
 - $c\overline{c}$ production scales as N_{bin}
 - Indicates charm production in initial state
 - STAR disagrees with PHENIX and FONLL calculations
- Non-photonic $e^{\pm} R_{AA}$
 - Suppression similar to light hadrons
 - Difficult for models to describe
- e[±]-h correlations
 - *b*-fraction consistent with FONLL

- The Future at PHENIX
 Hadron Blind Detector
- The Future at STAR
 - Low Material Run
 - Reduce photonic e+ bkg.
 - Improvements in data recording
- Improved Track Resolution Near Vertex
 - Better heavy flavor decay reconstruction
 - Disentangle charm and bottom
- The Future at RHIC
 - RHIC II Luminosity Upgrade

For more information about heavy-ion physics, visit http://www.bnl.gov/RHIC/

Additional Material

Experiments at RHIC

~500 Collaborators

٠

е[±] Identification

- EMC: *p*/*E* < 2
- SMD: cluster sizes ≥ 2
- TPC: 3.5 keV/cm < dE/dx
 5 keV/cm

- **EMC**: *E*/*p* 1 > -2*σ*
- EMC: shower shape
- DC: tracks match EMC showers
- **RICH**: \geq 3 associated hits

Quarkonium Suppression

- QGP Debye color screening → suppressed heavy quarkonia
- Different resonances may have different dissociation temperatures:
- Spectrum of quarkonia could be a thermometer for the medium (eventually)
- Suppression of heavier resonances (i.e. χ_c) can still suppress J/Ψ yield

Quarkonium Dissociation Temperatures (Digal, Karsch, and Satz)

Color S	creen	ing
$\Psi'(2s)$ $\chi_c(1p)$ $Y(3s)$ $\chi_b(2p)$ $Y(2s)$	<i>T_d/T_c</i> 1.12 1.16 1.17 1.19 1.60	Just one calculation; others disagree

1.76

>4.0

 $J | \Psi | 2.10$

 $\chi_b(1p)$

Y(1s)

J/Ψ Suppression

- Suppression (R_{AA}) similar for:
 - NA50 (SPS) Pb + Pb, $\sqrt{s_{NN}}$ =17.2 GeV
 - PHENIX Au + Au, $\sqrt{s_{NN}}$ =200 GeV
- Suppression-only models:
 - describe SPS suppression well
 - over-predict RHIC suppression
- Regeneration of J / Ψ :
 - Gluon density at RHIC 2-3 times greater than at SPS
 - More cc̄ pairs
 - Quarks from dissociated cc̄ pairs can recombine into new pairs

Cold Nuclear Matter Effects

- - Dissociation/Absorption
 - Cronin Effect (multiple gluon scattering)
 - Shadowing (depletion of lowmomentum gluons)
 - Gluon Saturation (Color Glass Condensate)
- d + Au: model (absorption + shadowing): σ_{abs} < 3 mb
- Need more d + Au data

200 GeV d+Au -> J/Psi Vogt expanding octet absorption

PH^{*}ENIX

Cold Nuclear Matter Effects

- - Dissociation/Absorption
 - Cronin Effect (multiple gluon scattering)
 - Shadowing (depletion of lowmomentum gluons)
 - Gluon Saturation (Color Glass Condensate)
- d + Au: model (absorption + shadowing): σ_{abs} < 3 mb
- Need more *d* + Au data
- Au + Au: same model underpredicts suppression
 - Need QGP?

J/Ψ Suppression

- R_{AA} for Au + Au similar to SPS NA50 (Pb + Pb)
- Models describe SPS data well, but not RHIC
- 2-3 times greater gluon density at RHIC:

$J\!\!/\Psi$ Suppression

- R_{AA} for Au + Au similar to SPS NA50 (Pb + Pb)
- Models describe SPS data well, but not RHIC
- 2-3 times greater gluon density at RHIC:
 - more cc pairs
 - pairs recombine
 - regeneration of $J\!\!/ \Psi$
- Yan model shows less suppression
- Models: mid-rapidity suppression greater than forward

Yan, Zhuang, and Xu: nucl-th/0608010

- Yields depend on orientation w.r.t reaction plane
 - Azimuthal anisotropy in medium
 - Unequal pressure gradients in and out of reaction plane
- Measured by v_2 (from Fourier expansion)

Yield $\propto 1 + \frac{v_2}{v_2} \cos 2(\phi_{lab} - \Psi_{plane}) + v_4 \cos 4(\phi_{lab} - \Psi_{plane}) + K$

- Yields depend on orientation w.r.t reaction plane
 - Azimuthal anisotropy in medium
 - Unequal pressure gradients in and out of reaction plane
- Measured by v_2 (from Fourier expansion)

Yield $\propto 1 + \frac{v_2}{v_2} \cos 2(\phi_{lab} - \Psi_{plane}) + v_4 \cos 4(\phi_{lab} - \Psi_{plane}) + K$

STAR observes large asymmetry

STAR: light hadron v₂ vs. p₇ suggest QGP obeys ideal hydrodynamics (0 viscosity)
 – QGP is "perfect liquid"?

- STAR: light hadron v₂ vs. p₇ suggest QGP obeys ideal hydrodynamics (0 viscosity)
 QGP is "perfect liquid"?
- PHENIX: flow of non-photonic e[±]
- Data suggest low viscosity for charm

Charm Cross-Section

PHENIX Non-photnic e[±]

