CHARM PRODUCTION THEORY

Random Musings

e⁺e⁻ → J/ψX, decay models, & NRQCD
 B → ψK & factorisation

$e^+e^- \to J/\psi \, \text{stuff}$

@KEK

 $X \rightarrow DD^*$ $X \not\Rightarrow \omega J/\psi$ $\Gamma = 87 \pm 22 \pm 26$ $\Gamma = 39 \pm 26$ P. Pakhlov, hep-ex/041204 K. Trabelsi, H05 $\sqrt{s} = 3.1$

Burns, Close, Thomas

spin-space factorisation

$$\psi(n) \to J/\psi\chi_2 = \sqrt{\frac{3}{20}} f_D(^3D_1) + \frac{1}{2} f_D(^5D_1) - \sqrt{\frac{28}{5}} f_D(^7D_1)$$

$$\psi(n) \to J/\psi\chi_1 = -2f_S(^3S_1) - \frac{1}{2} f_D(^3D_1) + \sqrt{\frac{3}{4}} f_D(^5D_1)$$

$$\psi(n) \to J/\psi\chi_0 = -\sqrt{3} f_S(^3S_1)$$

$$\psi(n) \to J/\psi\eta = -\sqrt{2} f_P$$

$$\psi(n) \to J/\psi h_c = -\frac{1}{\sqrt{2}} f_D(^3D_1) + \sqrt{\frac{3}{2}} f_D(^5D_1)$$

 $\psi \to \omega f_0(980) = 0.14 \pm 0.05$ $\psi \to \omega f_1(1420) = 0.7 \pm 0.2$ $\psi \to \omega f_2 = 4.3 \pm 0.6$ $\psi \to \omega f_0(1710) = 0.36 \pm 0.06$

NRQCD

 $\sigma(\psi) = \sum \sigma_n(\Lambda) \langle \mathcal{O}_n^{\psi}(\Lambda) \rangle$ n

short distance

long distance process independent organise in powers of v

 $\mathcal{O}_{1}({}^{1}S_{0}) = \psi^{\dagger}\chi\chi^{\dagger}\psi$ $\mathcal{O}_{1}({}^{3}S_{1}) = \psi^{\dagger}\vec{\sigma}\chi\cdot\chi^{\dagger}\vec{\sigma}\psi$ $\mathcal{O}_{8}({}^{1}S_{0}) = \psi^{\dagger}T^{a}\chi\chi^{\dagger}T^{a}\psi$ $\mathcal{O}_{8}({}^{3}S_{1}) = \psi^{\dagger}T^{a}\vec{\sigma}\chi\cdot\chi^{\dagger}T^{a}\vec{\sigma}\psi$

NRQCD

Table 1: Cross Sections (fb) for $e^+e^- \rightarrow J/\psi H$ at $\sqrt{s} = 10.6$ GeV				
Н	η_c	χ_{c0}	η_c'	
BaBar	$17.6 \pm 2.8 \pm 2.1$	$10.3 \pm 2.5 \pm 1.8$	$16.4 \pm 3.7 \pm 3.0$	
Belle	$25.6 \pm 2.8 \pm 3.4$	$6.4\pm1.7\pm1.0$	$16.5 \pm 3.0 \pm 2.4$	
BL	2.31 ± 1.09	2.28 ± 1.03	0.96 ± 0.45	
LHC	5.5	6.9	3.7	
BC	~ 33			
BLL	26.7		26.6	

Problem resolved at NLO? [Zhang, Gao, Chao, PRL96,092001 (06)?]

NRQCD

$$R = \frac{\sigma(e^+e^- \to J/\psi X_{c\bar{c}})}{\sigma(e^+e^- \to J/\psi X)} = 0.82 \pm 0.15 \pm 0.14$$

BELLE-CONF-0331

 $R_{NRQCD} \approx 0.1$

PESKIN'S OPE

Peskin, NPB156, 365 (79)

$$L_{eff} = -\sum_{N=1} C_E^{(N)ij} a_0^3 \epsilon_B^{2-2N} \cdot E^i D_0^{2N-2} E^j$$

$$C_E^{(N)ij} = 2\pi\alpha_s \frac{\epsilon_B^{2N-2}}{N_c a_0^3} \langle \phi | r^i \frac{1}{(H_A - M_\phi)^{2N-1}} r^j | \phi \rangle$$
$$H_A = \alpha_s \frac{1}{6r}$$

$$C_E(1S) = \frac{14\pi}{3(N_c^2 - 1)}$$

$$C_E(2S) = \frac{502}{7}C_E(1S)$$

ADIABATIC HYBRID SURFACES

H_A not observed

universal behaviour *not* observed

Lakhina & Swanson, PLB582, 172 (04)

B DECAYS AND RESCATTERING

RESCATTERING IN B DECAYS

 $B \to \chi_{cJ} K^{(*)}$

factorisation

$Br(B \rightarrow$	$\chi_{c0}K) =$	1.4(2)	$\cdot 10^{-4}$
--------------------	-----------------	--------	-----------------

 $Br(B \to \chi_{c1}K) = 4.9(5) \cdot 10^{-4}$

 $Br(B \to \chi_{c2}K) < 2.9 \cdot 10^{-5}$

non-zero

zero

zero

RESCATTERING IN B DECAYS

 $B \to \chi_{cJ} K^{(*)}$

	factorization	final state	
	Tactorisation	interaction	
$Br(B \to \chi_{c0}K) = 1.4(2) \cdot 10^{-4}$	zero	S-wave	
$Br(B \to \chi_{c1}K) = 4.9(5) \cdot 10^{-4}$	non-zero	P-wave	
$Br(B \to \chi_{c2}K) < 2.9 \cdot 10^{-5}$	zero	D-wave	

RESCATTERING IN B $B \rightarrow J/\psi K^{(*)}$ **DECAYS**

	$\frac{Br(B \to J/\psi K^*)}{Br(B \to J/\psi K)}$	$\frac{\Gamma_L(B \to J/\psi K^*)}{\Gamma(B \to J/\psi K^*)}$
expt	1.64 ± 0.34	$0.66 \pm 0.1^{+0.10}_{-0.08}$
		$0.80 \pm 0.08 \pm 0.05$
BSWi	4.23	0.57
BSWii	1.61	0.36
ISGW	1.71	0.06
QCDSR	7.60	0.36

expt	$ A_0 ^2$	$ A_{\perp} ^2$	$\delta_{ }$	δ_{\perp}
CLEO	$0.52 \pm 0.07 \pm 0.04$	$0.16 \pm 0.08 \pm 0.04$	$3.00 \pm 0.37 \pm 0.04$	$-0.11 \pm 0.046 \pm 0.03$
CDF	$0.59 \pm 0.06 \pm 0.01$	$0.23 \pm 0.19 \pm 0.04$	$2.2\pm0.5\pm0.1$	$-0.6 \pm 0.5 \pm 0.1$
BaBar	$0.556 \pm 0.009 \pm 0.010$	$0.233 \pm 0.010 \pm 0.005$	$2.93 \pm 0.08 \pm 0.04$	$2.91 \pm 0.05 \pm 0.03$
Belle	$0.574 \pm 0.012 \pm 0.009$	$0.195 \pm 0.012 \pm 0.008$	$-2.887 \pm 0.090 \pm 0.008$	$2.938 \pm 0.064 \pm 0.010$

X(3872) PRODUCTION

X(3872) STRUCTURE

 $B^{0} \rightarrow K^{+}D^{0}D^{-}$ $B^{0} \rightarrow K^{0}D^{-}D^{+}$ $B^{+} \rightarrow K^{+}D^{0}\bar{D}^{0}$ $B^{+} \rightarrow K^{0}\bar{D}^{0}D^{+}$

 $B^0 \to K^0 D^0 \overline{D}^0$ $B^0 \rightarrow K^0 D^+ D^ B^+ \to K^+ D^0 \bar{D}^0$ $B^+ \rightarrow K^+ D^+ D^-$

colour:

 $\frac{Br(B^0 \to XK^0)}{Br(B^+ \to XK^+)} = 0.61(36)(6)$ D. Bernard, Beijing, 6-05

$$\frac{Br(B^0 \to K^0 X)}{Br(B^+ \to K^+ X)} = \frac{|4Z_{+-}^{1/2} + Z_{00}^{1/2}|^2}{|4Z_{00}^{1/2} + Z_{+-}^{1/2}|^2} \approx 0.06 - 0.29$$

NRQCD supplants the colour singlet and colour evaporation models, but does it work for charm?

Solution there is ample evidence of non-factorisation in B decays

Solve B decays and e⁺e⁻ are an excellent laboratory for exploring the dynamics of strong QCD

+ ÆRIC MEC HEHT GEWYRCAN