Charmonium:

Above the Open Charm Threshold

Estia Eichten

Fermilab
\uparrow QCD Dynamics Near Threshold
\uparrow The $\psi(3770)$
\downarrow Other Charmonium States

- $\mathrm{X}(3872)$
$\rightarrow Y(4260)$ and Beyond
- To Do List

QCD Dynamics Near Threshold

- QCD dynamics is much richer than present phenomenological models Lattice QCD
- Gluon/String dynamics
- Light quark loops and strong decays

Below Threshold

Narrow states allow precise experimental probes of the subtle nature of QCD

NRQCD: $\quad<v^{2} / c^{2}>\approx 0.3$
Potential models:
masses
spin splittings
EM transitions
hadronic transitions direct decays

Lattice QCD:

masses
spin splittings approaches
EM transitions
Supports and will supplant potential models

FIGURE 8. Transitions among low-lying charmonium states. From Ref. [65].
lattice determination of potentials with unprecedented precision

> Y. Koma, M. Koma and H. Wittig

Quenched
[PRL 97 (2006) 122003]

Heavy quark potential

To $O\left(1 / m^{2}\right)$

$$
\begin{aligned}
V(r) & =V^{(0)}(r)+\left(\frac{1}{m_{1}}+\frac{1}{m_{1}}\right) V^{(1)}(r)+O\left(\frac{1}{m^{2}}\right) \\
& +\left(\frac{\vec{s}_{1} \vec{l}_{1}}{2 m_{1}^{2}}-\frac{\vec{s}_{2} \vec{l}_{2}}{2 m_{2}^{2}}\right)\left(\frac{V^{(0)}(r)^{\prime}}{r}+2 \frac{V^{(1)}(r)^{\prime}}{r}\right)+\left(\frac{\vec{s}_{2} \vec{l}_{1}}{2 m_{1} m_{2}}-\frac{\vec{s}_{1} \vec{l}_{2}}{2 m_{1} m_{2}}\right) \frac{V^{(2)}(r)^{\prime}}{r} \\
& +\frac{1}{m_{1} m_{2}}\left(\frac{\left(\vec{s}_{1} \vec{r}\right)\left(\vec{s}_{2} \vec{r}\right)}{r^{2}}-\frac{\vec{s}_{1} \vec{s}_{2}}{3}\right) V^{(3)}(r)+\frac{\vec{s}_{1} \vec{s}_{2}}{3 m_{1} m_{2}} V^{(4)}(r)
\end{aligned}
$$

Fine and hyper-fine splitting

Recent LQCD results

Dudek, Edwards, Richards

[PR D73:07450 (2006)]

E1 $\quad \chi_{c 0} \rightarrow J / \psi \gamma \chi_{c 1} \rightarrow J / \psi \gamma h_{c} \rightarrow \eta_{c} \gamma$
$\beta / \mathrm{MeV} \quad 542(35) \quad 555(113) \quad 689(133)$

$$
\rho / \mathrm{MeV} \quad 1080(130) \quad 1650(590) \quad \infty
$$

$\Gamma_{\text {phys.mass }}^{\text {lat.mass }} / \mathrm{keV}$	$288(60)$	$600(178)$	$663(132)$
$\Gamma_{\text {CLEO }}^{\text {PDG }} / \mathrm{keV}$	$115(14)$	$487(122)$	$601(55)$
$204(31)$	$303(44)$	-	

$\mathbf{M 1}$	$J / \psi \rightarrow \eta_{c} \gamma$	$\mathbf{M} 2$	$\chi_{c 1} \rightarrow J / \psi \gamma$
β / MeV	$540(10)$	β / MeV	$617(142)$
$\Gamma_{\text {phys.mass }}^{\text {lat.mass }} / \mathrm{keV}$	$1.61(7)$	$2.57(11)$	$\frac{M 2}{E 1}$
$\Gamma_{\phi \phi}^{\mathrm{PDG}} / \mathrm{keV}$	$1.14(33)$	$-0.199(121)$	
$2.9(1.5)$	expt.	$-0.002\left({ }^{+8} 8\right)$	

Promising but still work to do: quenched
ground states
extrapolations
$Q^{2} \rightarrow 0$
$a->0$

E. Eichten - Fermilab

Charm Workshop - Cornell - Aug 6, 2007

Above Threshold

Hard to extract states in the threshold region in LQCD

Excited charmonium states
Strong decay channels -- resonances:

Nearby Thresholds

Gluon/String Dynamics

Heavy Quark Limit - Static Energy

Short distance: Perturbative QCD singlet: $-4 / 3 \alpha_{s} / r$ octet: $2 / 3 \alpha_{s} / r \quad$ gluelumps

Large distance: String
σr NG string behavour

Operators for excited gluon states

FIG. 2: Short-distance degeneracies and crossover in the spectrum. The solid curves are only shown for visualization. The dashed line marks a lower bound for the onset of mixing effects with glueball states which requires careful interpretation.

Hybrid Potentials

Solve the Schoedinger Equation for each potential

$$
-\frac{1}{2 \mu} \frac{d^{2} u(r)}{d r^{2}}+\left\{\frac{\left\langle L_{Q \bar{Q}}^{2}\right\rangle}{2 \mu r^{2}}+V_{Q \bar{Q}}(r)\right\} u(r)=E u(r),
$$

where
$\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}, \quad \boldsymbol{S}=\boldsymbol{s}_{Q}+\boldsymbol{s}_{\bar{Q}}, \quad \boldsymbol{L}=\boldsymbol{L}_{Q \bar{Q}}+\boldsymbol{J}_{g}$
$\left\langle\boldsymbol{L}_{O \bar{O}}^{2}\right\rangle=L(L+1)-2 \Lambda^{2}+\left\langle J_{g}^{2}\right\rangle$
eigenstates
$|L S J M ; \lambda \eta\rangle+\varepsilon|L S J M ;-\lambda \eta\rangle$

where $\varepsilon= \pm 1, \Lambda=|\lambda|$

$$
P=\varepsilon(-1)^{L+\Lambda+1}, \quad C=\eta \varepsilon(-1)^{L+S+\Lambda}
$$

Light quark loops

Effects on spectrum clearly seen in LQCD

C.T. H. Davies et al. [HPQCD, Fermilab Lattice, MILC, and UKQCD Collaborations], PRL 92, 02200I (2004)

Including Light Quark Effects

$$
\left[\mathcal{H}_{0}+\mathcal{H}_{2}+\mathcal{H}_{I}\right] \psi=\omega \psi
$$

\mathcal{H}_{0}. $Q \bar{Q}$

NRQCD (without couplings light quarks)
$\mathcal{H}_{I} \quad Q \bar{Q} \Longrightarrow Q \bar{q}+q \bar{Q}$
light quark pair creation
Cornell model (CCCM)

$$
\mathcal{H}_{I}=\frac{3}{8} \sum_{a} \int: \rho_{a}(\mathbf{r}) V\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \rho_{a}\left(\mathbf{r}^{\prime}\right): d^{3} r d^{3} r^{\prime}
$$

$\begin{array}{ll}\text { Vacuum Pair Creation model } \\ \text { (UPC) }\end{array} \quad \mathcal{H}_{I}=\gamma \int \bar{\psi} \psi(\mathbf{r}) d^{3} r$
\mathcal{H}_{2}
$Q \bar{q}+q \bar{Q}$ meson pair interactions

Lattice effort to extract couplings

	nnd

FIG. 13: The two energy levels, as a function of \bar{r}, normalized with respect to $2 m_{B}$ (horizontal line). The curve corresponds to the three parameter fit to $E_{1}(\bar{r})$, Eqs. (80)-(82), for $0.2 \mathrm{fm} \leq \bar{r} \leq 0.9 \mathrm{fm}<r_{c}$.

FIG. 18: The transition rate g between $|B\rangle$ and $|Q\rangle$ states, as a function of \bar{r}.

Coupling to open-charm channels

Phenomenological approach:

$$
\begin{align*}
& \mathcal{H}_{I}=\frac{3}{8} \sum_{a} \int: \rho_{a}(\mathbf{r}) V\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \rho_{a}\left(\mathbf{r}^{\prime}\right): d^{3} r d^{3} r^{\prime} \tag{СССМ}\\
& \rho^{a}=\bar{c} \gamma^{0} t^{a} c+\bar{q} \gamma^{0} t^{a} q
\end{align*}
$$

Calculate pair-creation amplitudes,
Evaluate $<^{3} D_{2}\left|\mathcal{H}_{I}\right| D \bar{D}^{\star} \geqslant$, etc.
ELQ 2004
Solve coupled-state system

solve
for ω and ψ_{0}

Statistical Factors in Strong Decays

Effects on the spectrum

Coupling to virtual channels induces spin-dependent forces in charmonium near threshold, because $M\left(D^{*}\right)>M(D)$

\Rightarrow| State | Mass | Centroid | Splitting
 (Potential) | Splitting
 (Induced) |
| :---: | :---: | :---: | :---: | :---: |
| $1^{1} \mathrm{~S}_{0}$ | 2979.9^{a} | 3067.6^{b} | -90.5^{e} | $+30.2^{e}$ |
| $1^{3} \mathrm{~S}_{1}$ | 3096.9^{a} | | -0.9 | |
| $1^{3} \mathrm{P}_{0}$ | 3415.3^{a} | | -114.9^{e} | +5.9 |
| $1^{3} \mathrm{P}_{1}$ | 3510.5^{a} | 3525.3^{c} | -11.6^{e} | -2.0 |
| $1^{1} \mathrm{P}_{1}$ | 3524.4^{f} | | $+0.6^{e}$ | +0.5 |
| $1^{3} \mathrm{P}_{2}$ | 3556.2^{a} | | $+31.9^{e}$ | -0.3 |
| $2^{1} \mathrm{~S}_{0}$ | 3638^{a} | 3674^{b} | -50.1^{e} | +15.7 |
| $2^{3} \mathrm{~S}_{1}$ | 3686.0^{a} | | $+16.7^{e}$ | -5.2 |
| $1^{3} \mathrm{D}_{1}$ | 3769.9^{a} | | -40 | -39.9 |
| $1^{3} \mathrm{D}_{2}$ | 3830.6 | $(3815)^{d}$ | 0 | -2.7 |
| $1^{1} \mathrm{D}_{2}$ | 3838.0 | 0 | +4.2 | |
| $1^{3} \mathrm{D}_{3}$ | 3868.3 | | +20 | +19.0 |
| $2^{3} \mathrm{P}_{0}$ | 3881.4 | | -90 | +27.9 |
| $2^{3} \mathrm{P}_{1}$ | 3920.5 | $(3922)^{d}$ | -8 | +6.7 |
| $2^{1} \mathrm{P}_{1}$ | 3919.0 | 0 | -5.4 | |
| $2^{3} \mathrm{P}_{2}$ | 3931^{g} | | +25 | -9.6 |
| $3^{1} \mathrm{~S}_{0}$ | 3943^{h} | $(4015)^{i}$ | -66^{e} | -3.1 |
| $3^{3} \mathrm{~S}_{1}$ | 4040^{a} | | $+22^{e}$ | +1.0 |

The $\psi(3770)$

pdg 2007
Mass $\boldsymbol{m}=3772.4 \pm 1.1 \mathrm{MeV}, \quad(\mathrm{S}=1.8)$ Full width 「 $=25.2 \pm 1.8 \mathrm{MeV}$

Decay width in good agreement with theory

Parameterizing the $\Psi(3770)$ as a simple mixture of |1D> and |2S> state is inadequate

CCC Model

Production in $e^{+} e^{-}$due to relativistic terms:
(a) Expansion of EM current

$$
\begin{array}{rlr}
j_{c}^{i}= & s_{1} \psi^{\dagger} \sigma^{i} \chi+\frac{s_{2}}{m_{c}^{2}} \psi^{\dagger} \sigma^{i} \mathcal{D}^{2} \chi & \text { S-wave } \\
& +\frac{d_{2}}{m_{c}^{2}} \psi^{\dagger} \sigma^{j}\left[\frac{1}{2}\left(\mathcal{D}^{i} \mathcal{D}^{j}+\mathcal{D}^{j} \mathcal{D}^{i}\right)-\frac{1}{3} \delta^{i j} \mathcal{D}^{2}\right] \chi+\ldots \quad \text { D-wave }
\end{array}
$$

(b) S-D mixing terms - short range
(c) Induced mixing from $D^{*}-D$ mass difference - long range

$$
\begin{aligned}
\psi(3772)= & 0.10|2 \mathrm{~S}\rangle+0.01 e^{+0.22 i \pi}|3 \mathrm{~S}\rangle+\ldots \\
& +0.69 e^{-0.59 i \pi}|1 \mathrm{D}\rangle+0.10 e^{+0.27 i \pi}|2 \mathrm{D}\rangle+\ldots
\end{aligned}
$$

Decays into open charm

The ratio, $R^{0 /+}$, of $D^{0} D^{0}$ to $D^{+} D^{-}$ production deviates from one due to isospin violating terms:
(a) up-down mass difference
(b) EM interactions
$\rightarrow m\left(D^{+}\right)-m\left(D^{0}\right)=4.78 \pm 0.10 \mathrm{MeV}$
\rightarrow different final state interactions

$$
\mathrm{R}^{0 /+}
$$

PDG07	p^{3}	CCCM
1.28 ± 0.14	1.47	1.36

The shape of the resonance differs from the usual Breit-Wigner:
(1) width $\Gamma(p)$ not pure p wave
(2) interference with 2 S state.

$$
\begin{array}{r}
\Gamma(p) \sim A \frac{p^{3}}{\Lambda^{2}} \exp \left(-\frac{p^{2}}{\Lambda^{2}}\right) \\
A=.18 \Lambda=.57 \mathrm{GeV} \\
p_{0}=283 \mathrm{MeV} \quad p_{+}=250 \mathrm{MeV}
\end{array}
$$

BES

Two very important measurement:
(1) Resonance shape
(2) Ratio of charge to neutral DD final states

$$
R^{c / n}=\frac{\sigma\left(e^{+} e^{-} \rightarrow P^{+} P^{-}\right)}{\sigma\left(e^{+} e^{-} \rightarrow P^{0} \bar{P}^{0}\right)}
$$

over the whole resonance region

G.P. Lepage, Phys.Rev. D 42, 3251 (1990).
N. Byers and E. Eichten, Phys.Rev. D 42, 3885 (1990).
R. Kaiser, A.V. Manohar, and T. Mehen, Report hep-ph/0208194, Aug. 2002 (unpublished)
M.B. Voloshin, Mod.Phys.Lett. A 18, 1783 (2003).
phase shifts
M.B. Voloshin, Phys.Atom.Nucl. 68, 771 (2005) [Yad.Fiz. 68, 804 (2005)].
S. Dubynskiy, A. Le Yaouanc, L. Oliver, J.-C. Raynal, and M. B. Voloshin [arXiv:0704.0293] text).

FIG. 1: The $R_{\mathrm{uds}(\mathrm{c})+\psi(3770)}(s)$ versus the c.m. energy

FIG. 9. Argand plot of the $D \bar{D} S$ matrix in the 1^{--} state. The rather narrow elastic ${ }^{3} D_{1}$ resonance ψ (3772) is clearly in evidence, as is an inelastic resonance at $\sim 4.15 \mathrm{GeV}$ due to the $3{ }^{3} S c \bar{c}$ state. The parameters are the same as in Figs. 7 and 8.
E. Eichten, K. Gottfried, T. Kinoshita, K. Lane and T.M. Yan PR D17, 3090 (1978)

Non DD decays of the $\psi(3770)$

-× J/ Ψ
Theory expectation for $\pi^{+} \pi^{-} J / \Psi: 0.1-0.7 \%$

$\psi^{\prime \prime} \rightarrow \pi^{+} \pi^{-} J / \psi$	$0.34 \pm 0.14 \pm 0.09$	BES
	$0.189 \pm 0.020 \pm 0.020$	CLEO
$\psi^{\prime \prime} \rightarrow \pi^{0} \pi^{0} J / \psi$	$0.080 \pm 0.025 \pm 0.016$	CLEO
$\psi^{\prime \prime} \rightarrow \eta^{0} J / \psi$	$0.087 \pm 0.033 \pm 0.022$	CLEO

- $\gamma X_{c J}$

Good agreement with theory expectations including relativistic effects

Mode	$E_{\gamma}(\mathrm{MeV})$	Predicted (keV)					CLEO (keV)
	$[55]$		(a)	(b)	(c)	(d)	(e)
n	$[136]$						
$\gamma \chi_{c 2}$	208.8	3.2	3.9	4.9	3.3	24 ± 4	<21
$\gamma \chi_{c 1}$	251.4	183	59	125	77	73 ± 9	70 ± 17
$\gamma \chi_{c 0}$	339.5	254	225	403	213	523 ± 12	172 ± 30

-light hadrons

No evidence for direct decays to light hadrons seen yet.

Puzzle of missing decays

$$
\begin{array}{r}
\sigma_{\psi(3770)}=6.38 \pm 0.08_{-0.30}^{+0.41} \mathrm{nb} \\
\sigma_{\psi(3770)}-\sigma_{\psi(3770) \rightarrow D \bar{D}}=-0.01 \pm 0.08_{-0.30}^{+0.41} \mathrm{nb}
\end{array}
$$

$$
\sigma_{\psi(3770)}=7.25 \pm 0.27 \pm 0.34 \mathrm{nb}
$$ non DD decays

Decay Mode	$\sigma_{\psi(3770) \rightarrow f}$ $[\mathrm{pb}]$	$\sigma_{\psi(3770) \rightarrow f}^{\mathrm{up}}[\mathrm{pb}]$	$\mathcal{B}_{\psi(3770) \rightarrow f}^{\mathrm{up}}$ $\left[\times 10^{-3}\right]$
$\phi \pi^{0}$	$<3.5^{t n}$	<3.5	<0.5
$\phi \eta$	$<12.6^{t n}$	<12.6	<1.9
$2\left(\pi^{+} \pi^{-}\right)$	$7.4 \pm 15.0 \pm 2.8 \pm 0.8$	<32.5	<4.8
$K^{+} K^{-} \pi^{+} \pi^{-}$	$-19.6 \pm 19.6 \pm 3.3 \pm 2.1^{z}$	<32.7	<4.8
$\phi \pi^{+} \pi^{-}$	$<11.1^{t n}$	<11.1	<1.6
$2\left(K^{+} K^{-}\right)$	$-2.7 \pm 7.1 \pm 0.5 \pm 0.3^{z}$	<11.6	<1.7
$\phi K^{+} K^{-}$	$-0.5 \pm 10.0 \pm 0.9 \pm 0.1^{z}$	<16.5	<2.4
$p \bar{p} \pi^{+} \pi^{-}$	$-6.2 \pm 6.6 \pm 0.6 \pm 0.7^{z}$	<11.0	<1.6
$p \bar{p} K^{+} K^{-}$	$1.4 \pm 3.5 \pm 0.1 \pm 0.2$	<7.2	<1.1
$\phi p \bar{p}$	$<5.8^{t n}$	<5.8	<0.9
$3\left(\pi^{+} \pi^{-}\right)$	$16.9 \pm 26.7 \pm 5.5 \pm 2.4$	<61.7	<9.1
$2\left(\pi^{+} \pi^{-}\right) \eta$	$72.7 \pm 55.0 \pm 7.3 \pm 8.2$	<164.7	<24.3
$2\left(\pi^{+} \pi^{-}\right) \pi^{0}$	$-35.4 \pm 24.6 \pm 6.6 \pm 4.0^{z}$	<42.3	<6.2
$K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$	$-36.9 \pm 43.8 \pm 12.8 \pm 4.2^{z}$	<75.2	<11.1
$2\left(K^{+} K^{-}\right) \pi^{0}$	$18.1 \pm 7.7 \pm 0.7 \pm 2.0^{n}$	<31.2	<4.6
$p \bar{p} \pi^{0}$	$1.5 \pm 3.9 \pm 0.5 \pm 0.1$	<7.9	<1.2
$p \bar{p} \pi^{+} \pi^{-} \pi^{0}$	$26.0 \pm 13.9 \pm 2.6 \pm 3.2$	<49.7	<7.3
$3\left(\pi^{+} \pi^{-}\right) \pi^{0}$	$-12.7 \pm 55.9 \pm 8.7 \pm 1.8^{z}$	<92.8	<13.7

BES [hep-ex/0705.2276]

The remaining D states

${ }^{3} D_{2} \quad{ }^{1} D_{2}$
No strong decays below
$D \bar{D}^{*}+\bar{D} D^{*} \quad$ threshold
${ }^{3} D_{3}$ decay width small search in $D \bar{D}$ channel

All remaining 1D states are narrow

How to produce these states?

Other Charmonium States ? X(3943), Y(3940), Z(3930), ...

Basic Questions in Charm Threshold Region:

Is it a new state? What are its properties?
Charmonium or not?
If not what? New spectroscopy?

Comments on ΔR

This rich structure arises simply from the 3S and 2D states

Interference between the 3S and 2D plays an important role.

Decay amplitudes for radially excited states have oscillatory structure

The peaks for individual final states do not coincide

Determining the number and properties of the resonances is impossible without a detail decay model.

A Caution for All

Updated Cornell Coupled Channel Model

Likely charmonium states:

Z(3930) - Observed by Belle in YY production
Decay mode DD
Mass $=3929 \pm 5$ (stat) ± 2 (sys) MeV
Width $=29 \pm 10$ (stat) ± 2 (sys) MeV
$J^{P C}=0^{++}$or 2^{++}
DD angular distribution favors $\mathrm{J}=2$

[PRL 96, 082003 (2006)]

$$
\begin{aligned}
& 2^{3} P_{2} \quad \chi_{\mathrm{c} 2}^{\prime} \\
& \Gamma=29 \mathrm{MeV} \quad \text { Model } \\
& \frac{D \bar{D}^{*}+D^{*} \bar{D}}{D \bar{D}}=0.32 \\
& \frac{D^{+} \bar{D}^{-}}{D^{0} \bar{D}^{0}}=0.95 \\
& 0.74 \pm 0.43 \pm 0.16 \quad \exp
\end{aligned}
$$

Other 2P States

Mass
$\begin{array}{ccc}2^{5} \mathrm{P}_{0} & 3881.4 & \\ 2^{3} \mathrm{P}_{1} & 3920.5 & (3922)^{d} \\ 2^{1} \mathrm{P}_{1} & 3919.0 & \\ 2^{3} \mathrm{P}_{2} & 3931^{g} & \end{array}$

Spin Splittings

-90	+27.9	$D \bar{D}$	61.5
-8	+6.7	$D \bar{D}^{*}$	81.0
0	-5.4	$D \bar{D}^{*}$	59.5
+25	-9.6	$D \bar{D}^{-}$	21.5
		$D \bar{D}^{*}$	7.1
		total	28.8

* $Y(3940)$ - Observed by Belle in B decays

Seen in decay mode $\omega \mathrm{J} / \Psi$
Significant branching fraction:

$$
\begin{array}{r}
\mathcal{B}\left(B^{+} \rightarrow K^{+} Y(3490)\right) x \mathcal{B}(Y(3940) \rightarrow \omega J / \psi)=7.1 \pm 1.3 \pm 3.1 \times 10^{-} 5 \\
\mathcal{B}\left(B^{+} \rightarrow K^{+}(c \bar{c})\right) \sim 6-10 \times 10^{-} 4 \text { per mode } \\
\text { SO } \\
\mathcal{B}(Y(3940) \rightarrow \omega J / \psi) \sim 0.1
\end{array}
$$

$2^{3} P_{1}$ interpretation:
Problems with mass and decay mode.
Main decay mode should be DD*
Present bound?

Y(3940) confirmed by Babar

$$
\begin{aligned}
M(Y) & =\left(3914.3_{-3.4}^{+3.8}(\text { stat })_{-1.6}^{+1.6}(\text { syst })\right) \mathrm{MeV} / \mathrm{c}^{2} \\
\Gamma(Y) & =\left(33_{-8}^{+12}(\text { stat })_{-0.6}^{+0.6}(\text { syst })\right) \mathrm{MeV}
\end{aligned}
$$

$>\sim 30 \mathrm{MeV}$ lower mass than Belle's
$>$ Narrower width
> Preliminary BF estimate similar to the Belle's ($\sim 10^{-5}$)

$2^{3} P_{1}$ interpretation:

Mass near expected value

$\star \quad X(3943)$ - Observed by Belle in recoil against J / Ψ

Mass $=3942^{+7}{ }_{-6} \pm 6 \mathrm{MeV}$
Width $=37^{+26}-15 \pm 12 \mathrm{MeV}$ (update EPS 2007)

Not a ${ }^{3} P_{0}$ state

$$
\operatorname{BR}(D \bar{D})<41 \% @ 90 \% c l
$$

Phys. Rev. Lett. 98, 082001 (2007)

$$
\operatorname{BR}\left(D \bar{D}^{*}+D^{*} \bar{D}\right)>45 \% @ 90 \% c l
$$

Likely the $\eta_{\mathrm{C}}^{\prime \prime}$ state
Width $\approx 50 \mathrm{MeV}$ (CCC Model) but
$M(\Psi(4040)-X(3943)) \approx 100 \mathrm{MeV}$ (Large)
Requires bare splitting: 88 MeV
Including DDp channels: Expected to add significant spin splitting

Belle - recoil against J/ Ψ

X(3872)

Mass $=3871.2 \pm 0.6$ Width < $2.390 \% \mathrm{cl}$

- Use $\sim 220 \mathrm{pb}^{-1}$ Run II Data

E. Eichten - Fermilab

Charm Workshop - Cornell - Aug 6, 2007
-31-

CDF II $360 \mathrm{pb}^{-1}$

$\pi^{+} \pi^{-}$mass distribution fits $\rho J / \Psi(L=0)$

$\mathrm{J}^{\mathrm{PC}}=1^{++}$

Strongly favored

	$J^{P C}$	χ^{2} prob.
X(3872) data points	1^{++}	27.8%
2^{-+}	25.8%	
acc. corrected	1^{--}	0.02%
prediction for	2^{+-}	$5.5 \cdot 10^{-5}$
$-\mathbf{o}_{\mathrm{p}}^{++}$	1^{+-}	$3.8 \cdot 10^{-5}$
$-\mathbf{1}_{s}^{--}$	2^{--}	$3.8 \cdot 10^{-5}$
$-\mathbf{1}_{\mathrm{p}}^{++}$	3^{+-}	$3.8 \cdot 10^{-5}$
$-\mathbf{2}_{\mathrm{p}}^{-+}$	3^{--}	$2.4 \cdot 10^{-5}$
	2^{++}	$1.1 \cdot 10^{-5}$
	1^{-+}	$4.1 \cdot 10^{-6}$
	0^{-+}	$3.5 \cdot 10^{-17}$
	0^{+-}	$<1 \cdot 10^{-20}$
	0^{++}	$<1 \cdot 10^{-20}$

Other decay modes

$$
\frac{\mathrm{X}(3872) \rightarrow " \omega " J / \psi}{\mathrm{X}(3872) \rightarrow \rho J / \psi}=1.0 \pm 0.4 \pm 0.3 \quad \text { Belle }
$$

Measure of isospin breaking

$$
C=+1
$$

Belle

$$
\frac{\mathrm{X}(3872) \rightarrow \pi^{0} D^{0} \bar{D}^{0}}{\mathrm{X}(3872) \rightarrow \pi^{+} \pi^{-} J / \psi} \approx 10
$$

$$
M=3875.4 \pm 0.7_{-1.7}^{+0.7} \pm 0.8 \mathrm{MeV}
$$

DD* "Binding Energy?":

$$
\mathrm{M}-\left(m_{D D^{+}}+m_{D^{*}}\right)=+4.3 \pm 0.7_{-1.7}^{+0.7} \mathrm{MeV}
$$

Recent developments

CLEO precise D^{0} mass measurement [PRL 98, 092002 (2007)]

$$
1864.847 \pm 0.150 \pm 0.095 \mathrm{MeV}
$$

$M(X)-M\left(D^{0}\right)-M\left(D^{0 *}\right)=-0.6 \pm 0.6 \mathrm{MeV}$

BaBar confirms Belle decay $D^{0} D^{* 0} \pi^{0}$ with X mass:

$$
\mathrm{M}=3875.4_{-2.0^{+1.2}} \pm 0.7 \mathrm{MeV} / \mathrm{c}^{2}
$$

Two key features of $X(3872)$:

X is extremely close to threshold
$D^{0} D^{* 0} \pi^{0}$ mode above threshold

$D^{0} \bar{D}^{0 *}$ molecule:

Tornqvist (8-03, 2-04); Close and Page (9-03); Pakvasa and Suzuki (9-03); Voloshin (9-03, 8-04, 9-05, 5-06); Wong (1103); Braaten and Kusunoki (11-03; 2-04; 12-04, 6-05, 7-05, 9-06); Swanson (11-03, 6-04, 10-04); Braaten, Kusunoki, and Nussinov (4-04); Kalashnikova (6-05); AlFiky, Gabbiani, and Petrov (6-05); El-Hady (3-06), Chiu and Hsieh (3-06); Zhang, Chiang, Shen and Zou (4-06); Melikhov and Stech (6-06)
tetraquark: $(\bar{c} \bar{q})_{3}(q c)_{\overline{3}}$
Vijande, Fernandez, and Valcarce (7-04); Maiani, Piccinini, Polosa, and Riquer (12-04); Ishida, Ishida and Maeda (9-05); Ebert, Faustov and Galkin (12-05); Karliner and Lipkin (1-06); Chiu and Hsieh (3-06)

threshold cusp:

Bugg (10-04)
tetraquark: $(\bar{c} c)_{8}(\bar{q} q)_{8}$
Hogassen, Richard and Sorba (11-05);
Buccella, Hogassen, Richard and Sorba (8-06)

hybrid: ($\bar{c} g c$)

Close and Page (9-03); Li (10-04)

Viable options

Tetraquarks No

No partner states found
Why so close to threshold?

Measurements:

- $\Delta \mathrm{m}=(2.7 \pm 1.3 \pm 0.2) \mathrm{MeV} / \mathrm{c}^{2}$ in $\mathrm{B} \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$
- $\Delta \mathrm{m}=(0.7 \pm 1.9 \pm 0.3) \mathrm{MeV} / \mathrm{c}^{2}$ in $\mathrm{B} \rightarrow \overline{\mathrm{D}}^{0} \mathrm{D}^{* 0} \mathrm{~K}$

BaBar: Phys. Rev. D73 (2006) 011101
BaBar: Preliminary

Hybrids

No

Decays to DD* unexpected Why so close to threshold?

Why so close to threshold?
Mass about 50 MeV to high Isospin issues

Molecule Some problems

Expect $\frac{\mathcal{B}\left(B^{0} \rightarrow X+K^{0}\right)}{\mathcal{B}\left(B^{+} \rightarrow X+K^{+}\right)} \sim 0.1$
What is the binding force?

Measurements:

- $R\left(B^{0} / B^{+}\right)=0.50 \pm 0.30 \pm 0.05$ in $B \rightarrow J / \psi \pi^{+} \pi^{-}$
- $R\left(B^{0} / B^{+}\right)=2.23 \pm 0.93 \pm 0.55$ in $B \rightarrow \bar{D}^{0} D^{*}{ }^{\circ} \mathrm{K}$

Pion exchange much too febble

BaBar: Phys. Rev. D73 (2006) 011101
BaBar: Preliminary
M.Suzuki

In a two body system with short range interactions and an S-wave bound state sufficiently close to threshold

Universal properties depending only on the large scattering length (a)

This applies to the $X(3872)$
If $a>0$ one bound state

$$
\begin{array}{ll}
\frac{1}{a}=\gamma_{r}+i \gamma_{i} & \mathrm{E}_{\mathrm{X}}=\gamma_{r}^{2} /(2 \mu) \quad \mu=\frac{M\left(D^{0}\right) M\left(D^{0 *}\right)}{M\left(D^{0}\right)+M\left(D^{0 *}\right)} \\
\Gamma_{\mathrm{X}}=2 \gamma_{r} \gamma_{i} / \mu \quad \\
\psi(r)=\frac{\exp \left(-\gamma_{r} r\right)}{r} & \sigma(E)=\frac{\pi}{\gamma_{r}^{2}+\left(\gamma_{i}+\sqrt{2 \mu E}\right)^{2}}
\end{array}
$$

Very large average separation between the charm quark and antiquark
Since this behavior is universal it gives no insight into how the bound state forms

For molecular interpretation cross section for $D^{0} D^{* 0} \pi^{0}$

$$
\sigma(E)=\frac{\pi}{\gamma_{r}^{2}+\left(\gamma_{i}+\sqrt{2 \mu E}\right)^{2}}
$$

Fit to BaBar data ?

$$
\operatorname{Im}(\Omega)
$$

$\operatorname{Re}(\Omega)$

Assume:

Pole at 0.6 MeV below threshold
Small non DD* width - 400 KeV
One possibility is that the nearby $2^{3} P_{1}$ state with its strong coupling to $D D^{*}$ provides the needed binding.

$$
G(W) \sim \frac{1}{[W-M+\Omega(W)+i \epsilon]}
$$

Obtain for $D^{0} D^{0} \pi^{0}$ final state

Even though the X state is slightly below threshold.

More complicated than Braaten and Kusunoki

Real part of Ω varies rapidly

Required conditions for this behaviour:
S wave threshold
Decay into two very narrow hadrons
Nearby state $\mid M_{s}-M$ (threshold) $\mid \leq \Gamma_{S}$ with sufficiently strong coupling to decay channel.

Y(4260) and Beyond

Production:

Seen by BaBar in ISR production
$\mathrm{J}^{\mathrm{PC}}=1^{--}$
Mass: $\quad 4259 \pm 8{ }_{-6}^{+2} \mathrm{MeV}$
Width: $88 \pm 23_{-4}^{+6} \mathrm{MeV}$
Confirmed by CLEO and Belle

BaBar

Decays: $\pi^{+} \pi^{-} J / \psi$ discovery mode

$$
\begin{gathered}
\pi^{0} \pi^{0} J / \psi \\
K^{+} K^{-} J / \psi
\end{gathered}
$$

consistent with isospin zero

NOT a charmonium state

4 S state: $\quad \Delta \mathrm{R} \sim 2.5$ for 4 S at Ruled out the $Y(4260)$ mass

2D (4160):

Ruled out

Lattice calculations:

$$
\begin{gathered}
\left.M\left(1^{-+}\right)=M\left(1^{--}\right) \text {(leading order in } 1 / m_{c}\right) \\
\text { McNeile review } \\
\text { ICHEP } 2006
\end{gathered}
$$

Early attempts of various groups give conflicting results for direct mass calculations

Chiu and Hsieh [hep-lat/0512029]
Luo and Liu [hep-lat/0512044]

...but it's not the $Y(4260)$...

Seen by BaBar in the decay mode

$$
\pi^{+} \pi^{-} \psi(2 S)
$$

Mass:

$4354 \pm 16 \mathrm{MeV}$

Width:

Try S-wave 3-body phase space, old and new resonance,
 Data $Y(4260)+B K G$

New resonance + BKG

 3-body phase-space + BKG BKG (non- $\psi(2 S)$)Nevt $=78$
Nbkg $=3.8 \pm 1.1$

Mass resolution
$\sim 7 \mathrm{MeV}$

Incompatible with $\mathbf{Y}(\mathbf{4 2 6 0}), \psi(4415)$, or S-wave 3-body phase-space production
Assuming a single resonance \Rightarrow mass=(4354 $\pm 16) \mathrm{MeV} / \mathrm{c}^{2}, \Gamma=(106 \pm 19) \mathrm{MeV}$ (statistical errors only) still insufficient to fully describe the spectrum (χ^{2}-prob $=1.4 \times 10^{-4}$)
compared with χ^{2}-prob $=1.6 \times 10^{-8}$ for $\mathbf{Y}(\mathbf{4 2 6 0}), 4.2 \times 10^{-9}$ for $\psi(\mathbf{4 4 1 5)}$

$106 \pm 9 \mathrm{MeV}$

Recently Confirmed by Belle

$$
\begin{gathered}
M(Y(4360)) \\
\Gamma_{\text {tot }}(Y(4360))
\end{gathered}
$$

$$
\begin{aligned}
& 4361 \pm 9 \pm 9 \\
& 74 \pm 15 \pm 10
\end{aligned}
$$

hybrid: ($\bar{c} g c$)

Close and Page (7-05); Kou and Pene (7-05); Zhu (7-05); Juge, O'Cais, Oktay, Peardon and Ryan (10-05); Luo and Liu (12-05); Chiu and Hsieh (12-05); Swanson (9-05, 1-06); Barnes (10-05); Eichten, Lane and Quigg (11-05); S. Godfrey (5-06); Buisseret and Mathieu (7-06);

```
threshold effect:
Beveren and Rupp (5-06); Rosner (8-06)
```

tetraquark: $(\bar{c} q)_{1}(\bar{q} c)_{1},(\bar{c} \bar{q})_{3}(q c)_{\overline{3}}$, or $(\bar{c} c)_{8}(\bar{q} q)_{8}$ Liu, Zeng and Li, (7-05); Bigi, Maiani, Piccinini, Polosa and Riquer (10-5); Yuan, Wang and Mo (11-05); Ebert, Faustov and Galkin (12-05); Maiani, Riquer, Piccinini and Polosa (306); Stancu (7-06); Cui, Chen, Deng and Zhu (7-06); Buccella, Hogassen, Richard and Sorba (8-06)

Molecular state - Unlikely

Channel	Threshold Energy	Width	
$D_{s}^{*+} D_{s}^{*-}$	4223.8	-	P wave
$D \bar{D}_{1}\left(3 / 2^{+}\right)$	4286.5	$20.3(1.7)$	D wave
$D \bar{D}_{1}\left(1 / 2^{+}\right)$	$4306(32)$	$329(76)$	S wave
$D \bar{D}_{2}\left(3 / 2^{+}\right)$	4327.5	$43.8(2.0)$	D wave
$D^{*} \bar{D}_{0}\left(1 / 2^{+}\right)$	$4315(36)$	$276(66)$	D wave

Threshold effects -

$D^{*} D \pi$ and $D^{*} D^{*} \pi$ measurements BES and Belle: Do not support these ideas

Close and Page [PL B628 (2005)]
Zhu [PL B625 (2005)]

Charmonium

Juge, Kuti,Morningstar [nucl-th/0307l|6]

Expect triplet partners

Quenched Spectrum

How many narrow?

Belle

New state $Y(4660)$ observed by Belle in $\pi^{+} \pi \Psi '$
4664 土 11 土 5
\Gamma 切 (Y(4660)) $48 \pm 15 \pm 3$

```

\section*{Very exciting}
\(Y(4260)\) and \(Y(4350)\) might be one wide state with energy dependent branching ratios． （compare 3 S region）
\(Y(4660)\) is a radial excitation of the charm quarks state （analog of \(\psi^{\prime}\) to \(\mathrm{J} / \psi\) ）

\section*{To Do List}

\section*{Summary and To Do List}

We are closer to a theoretical understanding the charm threshold region than it may appear.

The \(X(3872)\) is likely \(D^{0} D^{0 *}\) bound state with binding provided by nearby \(2^{3} P_{1}\) state.

The [Y(4260), \(Y(4350)]\) and \(Y(4660)\) highly
suggestive of the hybrid nature of these states.
Lattice calculations will provide insight into theoretical issues.
NRQCD and HQET allows scaling from \(c\) to \(b\) systems. This will eventually provide critical tests of our understanding of new charmonium states.

Answers in many cases will require the next generation of heavy flavor experiments - BES III, LHCb and Super-B factories.

\section*{A list of experimental and theoretical questions:}

\section*{1 For experiment:}
- Measure \(R^{+/-}(E)\) in the \(\psi(3770\) resonance region.
- Observe \(\psi(3770) \rightarrow \gamma \chi_{c 2}\)
- Angular distribution of \(X(3940) \rightarrow D+D^{*}\) to distinguish \(0^{-+}\)and \(0^{++}\).
- The measurement of the \(D^{0} \bar{D}^{0} \pi^{0}\) decay mode of the \(\mathrm{X}(3872)\) by Belle and Babar is very important to understanding the nature of \(\mathrm{X}(3872)\). Can more information about the shape of the enhancement be obtained?
- The \(\mathrm{Y}(4260)\) and/or \(\mathrm{Y}(4350)\) are above threshold for decays to \(D^{*} D_{P}\) states. These various decays play an important role in understanding the nature of these states. What limit can you put on the ratio of such decays to the \(\pi \pi J / \psi\left({ }^{\prime}\right)\) discovery modes?
- Confirm the \(\mathrm{Y}(4660)\) in \(\pi \pi J / \psi^{\prime}\). Look for other modes 'light hadrons' \(+J / \psi\left({ }^{\prime}\right)\) and \(\omega+\chi_{c J}\).
- Look for \(\mathrm{Y}(4260)\), Y4350), and Y4660) in \(\pi^{+} \pi^{-} \psi^{\left({ }^{\prime}\right)}\) at hadron colliders.

\section*{2 For theory:}
- Compute \(\Delta R_{c}\) in the region near the \(\psi(3770)\) resonance. This will provide a detailed model for fitting the total cross section.
- Include \(D^{(*)}+\bar{D}_{P}\) final states in coupled channel calculations.
- Investigate the excitation spectrum for hybrid states using the JKM static potential.

\section*{3 For lattice:}
- The combination of the static energy for hybrids and the SE for obtaining the masses is very practical. If the \(\mathrm{Y}(4260)\) is a hybrid state, then there is a triplet of nearby states expected ( \(0-+, 1-+, 2-+\) ). The splitting comes from including the heavy quark spin fine structure. How could this be calculated? Even the sign would be useful.
- Much better calculations of the masses of low-lying four quark \((Q \bar{q} q \bar{Q})\) states are needed. What is the prospect obtaining them in the near future. Could a more indirect approach be used to decide if any of the diquark combinations are sufficiently attractive to bind?
- The combination of the static energy for hybrids and the SE for obtaining the masses is very practical. If the \(\mathrm{Y}(4260)\) is a hybrid state, then there is a triplet of nearby states expected ( \(0-+, 1-+, 2-+\) ). The splitting comes from including the heavy quark spin fine structure. How could this be calculated? Even the sign would be useful.```

