Double $c\overline{c}$ production in e^+e^- annihilations at high energy

Bruce Yabsley

Belle collaboration / University of Sydney

Charm 2007 Workshop, Cornell University, 5th August 2007

伺 ト イヨト イヨト ヨヨー シマウ

Outline

History

Continuum $e^+e^- \rightarrow \psi X$ production Two-body $e^+e^- \rightarrow \psi (c\overline{c})_{res}$ production

Baseline results

The new cutting edge: states above open-charm threshold Published results on "X(3940)" Updated method Updated results: $\psi D\overline{D}, \psi D\overline{D}^*, \psi D^*\overline{D}^*$ Cross-checks

Sidelines

The inclusive $\psi \, c \overline{c} / \psi \, X$ fraction The $e^+e^- \rightarrow \psi \, g$ process

Summary

$e^+e^- \rightarrow \psi X$ production: How we came to study it Belle: K. Abe et al., Phys. Rev. Lett. 88, 052001 (2002)

search for direct $\Upsilon(4S) \rightarrow J/\psi X$ production (*cf.* old CLEO result)

- ▶ $\rho_{\psi}^* > 2.0 \, \text{GeV}$ cut: veto $\Upsilon(4S) \to B\overline{B}[\to \psi X]$
 - ψ yield on-resonance [top]
 - ψ yield off-resonance [bottom]
 - \times on/off scale factor
 - $=\psi$ yield from $\Upsilon(4S)$
- ► $\mathcal{B}(\Upsilon(4S) \to J/\psi X)$ < 1.9 × 10⁻⁴ @ 95% C.L.
- *i.e.* all of these J/ψ are from continuum production

○ 4 문 > 4 문 > 4 문 > 4 문 > 4 문 > 4 명 > 4 명 > 1

$\mathrm{e^+e^-} \rightarrow \psi X$ production: What was expected

contributions from various processes (according to NRQCD):

so we expect the p_{ψ}^{*} spectrum to have two components . . .

◆母 ▶ ◆目 ▶ ◆目 ▶ ◆日 ● ◆

$e^+e^- \rightarrow \psi X$ production: What was expected

 $e^+e^- \rightarrow \psi g$

continuous component [maybe some $\psi \ c \overline{c}$ modification] peak/spike at endpoint

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

across a range
$$p_\psi^* \in [0, p_{max}^*]$$
, $p_{max}^* = rac{s-m_\psi^2}{2\sqrt{s}} = 4.84\,{
m GeV}/c$

 OK, so there is a continuous component

- OK, so there is a continuous component
- ▶ but there is no spike at the p^{*}_ψ endpoint [we'll return to this later]

- OK, so there is a continuous component
- but there is no spike at the p^{*}_{\u03c0} endpoint [we'll return to this later]

- OK, so there is a continuous component
- but there is no spike at the p^{*}_{\u03c0} endpoint [we'll return to this later]
- more striking: $\sigma \rightarrow 0$ <u>before</u> endpoint
- ► idea:

 p_{ψ}^{*} may not be the most natural representation of the data

▶ study the <u>recoil mass</u> $M_{\text{recoil}}(\psi) = \sqrt{(\sqrt{s} - E_{\psi}^*)^2 - (p_{\psi}^*)^2}$

◆□ > < E > < E > E = 9900

- study the <u>recoil mass</u> $M_{\text{recoil}}(\psi) = \sqrt{(\sqrt{s} E_{\psi}^*)^2 (p_{\psi}^*)^2}$
- production at fixed $\sqrt{s} = 10.58$ (and 10.52) GeV
 - ▶ 1–1 mapping between p_{ψ}^* and $M_{\text{recoil}}(\psi)$
 - ▶ nontrivial upper bound on $p_{\psi}^* \equiv \underline{lower}$ bound on $M_{\text{recoil}}(\psi)$

- ▶ study the <u>recoil mass</u> $M_{\text{recoil}}(\psi) = \sqrt{(\sqrt{s} E_{\psi}^*)^2 (p_{\psi}^*)^2}$
- production at fixed $\sqrt{s} = 10.58$ (and 10.52) GeV
 - ▶ 1–1 mapping between p_{ψ}^* and $M_{\mathsf{recoil}}(\psi)$
 - ▶ nontrivial upper bound on $p_{\psi}^*\equiv$ lower bound on $M_{
 m recoil}(\psi)$

key limitation:

non-reconstruction of remainder X

 \longrightarrow identification of this system is indirect

- ▶ study the <u>recoil mass</u> $M_{\text{recoil}}(\psi) = \sqrt{(\sqrt{s} E_{\psi}^*)^2 (p_{\psi}^*)^2}$
- production at fixed $\sqrt{s} = 10.58$ (and 10.52) GeV
 - ▶ 1–1 mapping between p_{ψ}^{*} and $M_{\mathsf{recoil}}(\psi)$
 - ▶ nontrivial upper bound on $p_{\psi}^* \equiv \underline{\text{lower}}$ bound on $M_{\text{recoil}}(\psi)$

key limitation:

non-reconstruction of remainder X

- \longrightarrow identification of this system is indirect
 - ▶ alternative interpretations spring from this limitation

- ▶ study the <u>recoil mass</u> $M_{\text{recoil}}(\psi) = \sqrt{(\sqrt{s} E_{\psi}^*)^2 (p_{\psi}^*)^2}$
- production at fixed $\sqrt{s} = 10.58$ (and 10.52) GeV
 - ▶ 1–1 mapping between p_{ψ}^{*} and $M_{\mathsf{recoil}}(\psi)$
 - ▶ nontrivial upper bound on $p_{\psi}^* \equiv \underline{\text{lower}}$ bound on $M_{\text{recoil}}(\psi)$

key limitation:

non-reconstruction of remainder X

- \longrightarrow identification of this system is indirect
 - alternative interpretations spring from this limitation
 - improvements to the method rely on ameliorating it

- ▶ study the <u>recoil mass</u> $M_{\text{recoil}}(\psi) = \sqrt{(\sqrt{s} E_{\psi}^*)^2 (p_{\psi}^*)^2}$
- production at fixed $\sqrt{s} = 10.58$ (and 10.52) GeV
 - ▶ 1–1 mapping between p_{ψ}^{*} and $M_{\mathsf{recoil}}(\psi)$
 - ▶ nontrivial upper bound on $p_{\psi}^*\equiv$ lower bound on $M_{\text{recoil}}(\psi)$

key limitation:

non-reconstruction of remainder X

- \longrightarrow identification of this system is indirect
 - alternative interpretations spring from this limitation
 - improvements to the method rely on ameliorating it
- ψ mass-vertex constraint \longrightarrow improved σ_{p^*} ; $\sigma_{M_{\text{recoil}}}$ (factor 2)

▲□> < E> < E> E|E のQQ

- ▶ study the <u>recoil mass</u> $M_{\text{recoil}}(\psi) = \sqrt{(\sqrt{s} E_{\psi}^*)^2 (p_{\psi}^*)^2}$
- production at fixed $\sqrt{s} = 10.58$ (and 10.52) GeV
 - ▶ 1–1 mapping between p_{ψ}^* and $M_{\mathsf{recoil}}(\psi)$
 - ▶ nontrivial upper bound on $p_{\psi}^*\equiv$ lower bound on $M_{
 m recoil}(\psi)$

key limitation:

non-reconstruction of remainder X

- \longrightarrow identification of this system is indirect
 - alternative interpretations spring from this limitation
 - improvements to the method rely on ameliorating it
- ψ mass-vertex constraint \longrightarrow improved σ_{p^*} ; $\sigma_{M_{\text{recoil}}}$ (factor 2)
- QED processes:
 - $N_{\text{track}} > 4$ cut to suppress low-multiplicity backgrounds

- ▶ study the <u>recoil mass</u> $M_{\text{recoil}}(\psi) = \sqrt{(\sqrt{s} E_{\psi}^*)^2 (p_{\psi}^*)^2}$
- production at fixed $\sqrt{s} = 10.58$ (and 10.52) GeV
 - ▶ 1–1 mapping between p_{ψ}^* and $M_{\mathsf{recoil}}(\psi)$
 - ▶ nontrivial upper bound on $p_{\psi}^*\equiv$ lower bound on $M_{\text{recoil}}(\psi)$

key limitation:

non-reconstruction of remainder X

- \longrightarrow identification of this system is indirect
 - alternative interpretations spring from this limitation
 - improvements to the method rely on ameliorating it
- ψ mass-vertex constraint \longrightarrow improved σ_{p^*} ; $\sigma_{M_{\text{recoil}}}$ (factor 2)
- QED processes:
 - $N_{\text{track}} > 4$ cut to suppress low-multiplicity backgrounds
 - ISR \longrightarrow high- M_{recoil} tail on any structure

$e^+e^- \rightarrow \psi(c\overline{c})_{res}$: The (unexpected) results Belle: K. Abe et al., Phys. Rev. Lett. 89, 142001 (2002)

$e^+e^- \rightarrow \psi(c\overline{c})_{res}$ vs alternative interpretations (1) Bodwin, Lee, And Braaten, Phys. Rev. D 67, 054023 (2003)

straightforward diagrams neglected

- in interpretation of data
- in previous theoretical work
- $\begin{array}{l} \bullet \ \mathrm{e^+e^-} \ \text{annihilation} \\ \to \gamma^* \ \to \psi \ X \quad \text{requires} \quad \xi_C^X = +1 \\ \to \gamma^*\gamma^* \to \psi \ X \quad \text{allows} \quad \xi_C^X = \pm 1 \end{array}$
- only $\psi \eta_c$ significant in 2002 PRL
- ► idea: "... there are probably $J/\psi + J/\psi$ events that contribute to the $J/\psi + \eta_c$ signal ... if these were taken into account, they would increase the compatibility between the NRQCD prediction and the Belle measurement"

◆□> ◆□> ◆三> ◆三> ●目目 のへの

$e^+e^- \rightarrow \psi(c\overline{c})_{res}$ vs alternative interpretations (1) Bodwin, Lee, And Braaten, Phys. Rev. D 67, 054023 (2003)

distributions in $x = \cos \theta_{\text{prod}}$:

 $\begin{array}{ll} \psi \ \eta_{\textit{c}} \ \ {\rm close} \ {\rm to} \ 1 + \cos^2 \theta_{\rm prod} \ [\gamma^* \ {\rm case}] \\ \psi \ \psi \ \ {\rm distinctive} \ {\rm forward} \ {\rm peak} \end{array}$

白 ト イヨト イヨト

= nac

$e^+e^- \rightarrow \psi(c\overline{c})_{res}$ vs alternative interpretations (2) Brodsky, Goldhaber, and Lee, Phys. Rev. Lett. 91, 112001 (2003)

mirror-image of the previous proposal ...

- $e^+e^- \rightarrow \psi gg$ process really does dominate
- ► ∃ heretofore unknown glueball state
- it's sitting at the η_c mass
- the gg are coupling to it ...

回 と く ヨ と く ヨ と

... and that's our signal

$e^+e^- \rightarrow \psi (c\overline{c})_{res}$ vs alternative interpretations (nemesis) Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)

- 1. full reconstruction of 3 $\psi \eta_c$ events (*cf.* 2.6 ± 0.8 expectation)
- **2.** full reconstruction of 0 $\psi \psi$ events (limit is weak)
- 3. $M_{\rm recoil}$ bias $\lesssim 3\,{
 m MeV}$
- **4.** angular analysis of ψ production (θ_{prod}) & helicity (θ_{hel}):

	$lpha_{prod}$	$lpha_{hel}$			
η_c	$1.4^{+1.1}_{-0.8}$	$0.5\substack{+0.7 \\ -0.5}$			
χ_{c0}	-1.7 ± 0.5	$-0.7\substack{+0.7 \\ -0.5}$			
$\eta_c(2S)$	$1.9^{+2.0}_{-1.2}$	$0.3\substack{+1.0 \\ -0.7}$			
no $\cos \theta_{\text{hel}} \rightarrow 1$ feature; consistent with $\alpha \rightarrow -\alpha + (\text{per } e^+ e^- \rightarrow \alpha^*)$					

$e^+e^- \rightarrow \psi (c\overline{c})_{res}$ vs alternative interpretations (nemesis) Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)

- 1. full reconstruction of 3 $\psi \eta_c$ events (*cf.* 2.6 ± 0.8 expectation)
- **2.** full reconstruction of 0 $\psi \psi$ events (limit is weak)
- **3.** $M_{\rm recoil}$ bias $\lesssim 3 \,{\rm MeV}$
- **4.** angular analysis of ψ production (θ_{prod}) & helicity (θ_{hel}):

	$\alpha_{\rm hel}\equiv\alpha_{\rm prod}$	expect ⁿ			
η_c	$0.93\substack{+0.57 \\ -0.47}$	+1 (P)			
χ_{c0}	$-1.01\substack{+0.38\\-0.33}$	-1 (S)			
$\eta_c(2S)$	$0.87\substack{+0.86 \\ -0.63}$	+1 (P)			
cf. $\alpha \simeq -0.87$ for glueball \mathcal{G}_0 cf. $\alpha \simeq +0.25$ for χ_{c0} in NRQCD					

Results: $e^+e^- \rightarrow \psi(c\overline{c})_{res}$ production Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)

Results: $e^+e^- \rightarrow \psi(c\overline{c})_{res}$ production BaBar: B. Aubert et al., Phys. Rev. D 72, 031101(R) (2005)

 J/ψ , $\chi_{c1,c2}$, $\psi(2S)$ added to the fit in turn: none is significant

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □臣

Results: $e^+e^- \rightarrow \psi(c\overline{c})_{res}$ production [Belle and BaBar]

$(c\overline{c})_{res}$	N (fit yield)		$M~({ m MeV}/c^2)$		
	Belle	BABAR	Belle	BABAR	
$\eta_c(1S)$	235 ± 26	126 ± 20	$2972\pm~7$	2985 ± 4	
χ_{c0}	89 ± 24	81 ± 20	3407 ± 11	3421 ± 5	
$\eta_c(2S)$	164 ± 30	121 ± 27	$3630\pm\ 8$	3645 ± 6	
J/ψ	-14 ± 20	-26 ± 13	fixed		
χ_{c1}	10+27	-5 ± 16	fixed		
χ_{c2}	10±21	-12 ± 16	fixed		
ψ (25)	-26 ± 29	30 ± 27	fixed		

Results: $e^+e^- \rightarrow \psi(c\overline{c})_{res}$ production [Belle and BaBar]

$J/\psi (c\overline{c})_{res}$		$\eta_c(1S)$ χ_{c0}		$\eta_c(2S)$	
Belle	$\sigma imes \mathcal{B}_{>2}$ [fb]	$25.6\pm2.8\pm3.4$	$6.4\pm1.7\pm1.0$	$16.5\pm3.0\pm2.4$	
BABAR	$\sigma imes \mathcal{B}_{>2}$ [fb]	$17.6\pm2.8^{+1.5}_{-2.1}$	$10.3\pm2.5^{+1.4}_{-1.8}$	$16.4\pm3.7^{+2.4}_{-3.0}$	
NRQCD:	σ [fb]				
$Braaten\&Lee^1$		$\textbf{3.78} \pm \textbf{1.26}$	$\textbf{2.40} \pm \textbf{1.02}$	1.57 ± 0.52	
with rela	tivistic corr ^{ns} :	$7.4^{+10.9}_{-4.1}$	-	$7.6^{+11.8}_{-4.1}$	
Liu,He,&Chao	2	5.5	6.9	3.7	
Zhang,Gao,&O	Chao ³	14.1	-	-	
Bondar&Cherr	nyak ⁴ light cone	33	-	-	

¹ PRD 67, 054007 & 72, 099901(E); ² hep-ph/0408141; ³ PRL 96, 092001; ⁴ PLB 612, 215-222 (2005)

- Iow-order perturbative calculations still don't reproduce the data
- theoretical postdiction is actively pursued with varying approaches; no longer easy to characterise the issues at stake (*e.g.* see discussion Bodwin, Kang, & Lee, PRD 74, 114028 (2006) re NRQCD vs light cone)
- data is still in the driving seat . . .

Results: $e^+e^- \rightarrow \psi(2S) (c\overline{c})_{res}$ production Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)

Results: $e^+e^- \rightarrow \psi(2S) (c\overline{c})_{res}$ production Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)

∰ ▶ € ▶

- ∢ ≣ ▶

Results: $e^+e^- \rightarrow \psi(2S) (c\overline{c})_{res}$ production Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)

Published: new "X(3940)" state [Belle: K. Abe et al., Phys. Rev. Lett. 98, 082001 (2007)]

extra tag & constraint: standard analysis: inclusive $M_{\text{recoil}}(\psi)$ spectrum $M_{\rm recoil}(\psi \,{\rm D}) \rightarrow m_{{\rm D}^{(*)}}$ N/20 MeV/c² 00 X(3940 η_c(2S) a) V/10 MeV/c h) 50 02 4.5 GeV/c² 3.5 2.5 3 38 4.2 GeV/c² $M_{recoil}(J/\psi)$ M_{recoil}(J/ψ)

5.0 σ peak at (3936 \pm 14) MeV

 $X(3940) \rightarrow \mathrm{D}^*\overline{\mathrm{D}}; \not\rightarrow \mathrm{D}^*\overline{\mathrm{D}}$

Updated: Systematic use of D^(*) tagging [BELLE-CONF-0705: PRELIMINARY]

DATA:

- $\blacktriangleright \psi$ recon, constraint
- ▶ D^0 , D^+ recon
- ▶ D refit $\rightarrow m_{\rm D}$
- $\blacktriangleright \text{ select } \psi \operatorname{D} \text{ or } \psi \operatorname{D}^*$
- ▶ form $M_{\text{recoil}}(\psi D^{(*)})$
- simultaneous fit with D-sidebands
- ► > 5 σ peaks: $\psi D\overline{D}, \ \psi D^*\overline{D},$ and $\psi D^*\overline{D}^*$

個 と く ヨ と く ヨ と

Updated: Systematic use of D^(*) tagging [BELLE-CONF-0705: PRELIMINARY]

MONTE CARLO:

- $\bullet e^+e^- \to \psi D\overline{D} \\ e^+e^- \to \psi D^*\overline{D} \\ e^+e^- \to \psi D^*\overline{D}^*$
- $\bullet \ \sigma \sim 30 \, \mathrm{MeV} \\ < (m_\mathrm{D}^* m_\mathrm{D})$

= 200

< ≣ >

= 200

- ▲ 문 ▶ - 문

Updated: Systematic use of D^(*) tagging [BELLE-CONF-0705: PRELIMINARY]

► tag processes requiring $|M_{\text{recoil}}(\psi D^{(*)}) - m_{\text{tag}}| < 70 \,\text{MeV}$

= 200

個 と くき とくき とうき

Updated: Systematic use of D^(*) tagging [BELLE-CONF-0705: PRELIMINARY]

tag processes requiring |M_{recoil}(ψ D^(*)) - m_{tag}| < 70 MeV
 ISR produces (e.g.) 10% ψDD → ψDD* cross-feed

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ● ●

Updated: Systematic use of D^(*) tagging [BELLE-CONF-0705: PRELIMINARY]

▶ tag processes requiring $\left| M_{\mathsf{recoil}}(\psi \, \mathrm{D}^{(*)}) - m_{\mathsf{tag}} \right| < 70 \, \mathrm{MeV}$

- ▶ ISR produces (*e.g.*) 10% $\psi D\overline{D} \rightarrow \psi D\overline{D}^*$ cross-feed
- constrain $M_{\text{recoil}}(\psi D^{(*)}) \rightarrow m_{\text{tag}} \dots$

< 臣 > < 臣 > 三目目 つへ⊙

Updated: Systematic use of D^(*) **tagging** [BELLE-CONF-0705: PRELIMINARY]

▶ tag processes requiring $\left| \textit{M}_{\mathsf{recoil}}(\psi \, \mathrm{D}^{(*)}) - \textit{m}_{\mathsf{tag}} \right| < 70 \, \mathrm{MeV}$

- ▶ ISR produces (e.g.) 10% $\psi D\overline{D} \rightarrow \psi D\overline{D}^*$ cross-feed
- ► constrain $M_{\text{recoil}}(\psi D^{(*)}) \rightarrow m_{\text{tag}} \dots$ resolution on $M(D^{(*)}\overline{D}^{(*)})$ improves by a factor of 3–10

Updated: $X \rightarrow D\overline{D}$ [BELLE-CONF-0705: PRELIMINARY]

- yellow: D_{rec} sidebands
- dashed: rel. B-W fit
- ▶ points: data (D_{rec} signal)
- solid: simultaneous fit to background (sideband)
 + threshold function
 + rel. S-wave B-W

回 と く ヨ と く ヨ と

Updated: $X \rightarrow D\overline{D}$ [BELLE-CONF-0705: PRELIMINARY]

- yellow: D_{rec} sidebands
- dashed: rel. B-W fit
- ▶ points: data (D_{rec} signal)
- solid: simultaneous fit to background (sideband)
 + threshold function
 + rel. S-wave B-W
- insignificant threshold term
- 4.4 σ resonant term
 - $M = (3878 \pm 48) \,\mathrm{MeV}$
 - $\Gamma = (347^{+316}_{-143})\,{\rm MeV}$
- unstable under:
 bkgd paramⁿ changes
 bin-width changes
 - extra B-W term

(日) (종) (종) (종) (종) (종)

= 200

Updated: $X \to D\overline{D}^*$ (D recon.; \overline{D}^* constraint) [BELLE-CONF-0705: PRELIMINARY]

- yellow: D_{rec} sidebands
- ▶ green: $D\overline{D}$ reflection
- dashed: $A\sqrt{M-2m_{\rm D}} \cdot e^{-BM}$ + reflection fit
- ▶ points: data (D_{rec} signal)
- solid: simultaneous fit to
 background (sideband)
 - background (sideband)
 - + reflection
 - + threshold function
 - + rel. S-wave B-W
 - \otimes resolution function (MC)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □臣

= 200

Updated: $X \to D\overline{D}^*$ (D recon.; \overline{D}^* constraint) [BELLE-CONF-0705: PRELIMINARY]

- yellow: D_{rec} sidebands
- ▶ green: $D\overline{D}$ reflection
- dashed: $A\sqrt{M-2m_{\rm D}} \cdot e^{-BM} +$ reflection fit
- ▶ points: data (D_{rec} signal)
- solid: simultaneous fit to background (sideband)
 - + reflection
 - + threshold function
 - + rel. S-wave B-W
 - \otimes resolution function (MC)

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- ► threshold term < 0</p>
- fix to zero and refit:

Updated: $X \to D\overline{D}^*$ (D recon.; \overline{D}^* constraint) [BELLE-CONF-0705: PRELIMINARY]

solid: simultaneous fit to

background (sideband)

- + reflection
- + rel. S-wave B-W
- \otimes resolution function (MC)
- 6.0 σ resonant term
 - $$\begin{split} M &= (3942^{+7}_{-6})\,\mathrm{MeV}\\ \Gamma &= (37^{+26}_{-15})\,\mathrm{MeV}\\ &< 76\,\mathrm{MeV}\,@\,90\%\,\mathrm{C.L}. \end{split}$$
- consistent PRL mass & yield
- *cf.* published width: 15.1±10.1 (< 52 @ 90%) MeV (non-parabolic *L* function)

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Updated: $X \rightarrow D^*\overline{D}^*$ [BELLE-CONF-0705: PRELIMINARY]

Born cross-section calculations per published analysis:

 $\begin{array}{lll} \sigma(\mathrm{e^+e^-} \to \psi \, X(3940)) & \times & \mathcal{B}(X(3940) \to \mathrm{D}\overline{\mathrm{D}^*}) & = & (13.9^{+6.4}_{-4.1}) \, \mathrm{fb} \\ \sigma(\mathrm{e^+e^-} \to \psi \, X(4160)) & \times & \mathcal{B}(X(4160) \to \mathrm{D^*}\overline{\mathrm{D}^*}) & = & (24.7^{+12.8}_{-8.3}) \, \mathrm{fb} \end{array}$

Again: comparable to $\psi \eta_c$ and other $2(c\overline{c})_{res}$ cross-sections

- ◆ 母 ▶ ◆ 臣 ▶ → 臣 ⊨ → りへで

Updated: systematics [BELLE-CONF-0705: PRELIMINARY]

	X(3940)			X(4160)			
Source	M	Г	σ	M	Г	σ	
Fitting procedure	± 4	± 6	± 5	± 12	± 18	± 2	
Selection	± 4	± 5	± 4	± 8	± 11	± 5	
Momentum scale	± 3			± 3			
Angular distributions			± 12			± 16	
Reconstruction			± 6			± 8	
Identification			± 4			± 4	
$\mathcal{B}(D^{(*)})$		_	± 3	—		± 4	
Total	± 6	± 8	± 16	± 15	± 21	± 20	

→ < E > < E > E =

Updated: cross-checks [BELLE-CONF-0705: PRELIMINARY]

- 1. D-sidebands represent D-window backgrounds well:
 - in MC: for backgrounds due to non-signal $\psi D^{(*)}\overline{D}^{(*)}$
 - in data: under various subsample tests
- 2. charged and neutral D-subsamples agree
- 3. for $X(3940) \rightarrow D\overline{D}^*$: the D^{*} recon, D constraint analysis gives consistent results (ϵ is low)

Sideline (1): the inclusive $\psi c\overline{c}/\psi X$ fraction Belle: K. Abe et al., Phys. Rev. Lett. 89, 042001 (2002) — model-dependent

$$\sigma(e^+e^- \to \psi \, c \bar{c}) / \sigma(e^+e^- \to \psi \, X) = 0.59^{+0.15}_{-0.13} \pm 0.12$$

method:

- recon+constrain ψ
- ▶ recon+constrain D^(*)
- ▶ veto B-daughters: p^{*}_D or p^{*}_ℓ > 2.6 gev
- 2D fit to obtain
 \$\psi D^{(*)} X\$ yields
- ▶ fragmentⁿ per PYTHIA

(本部) ((日) (日) (日)

= 200

• deduce σ

Sideline (1): the inclusive $\psi c\overline{c}/\psi X$ fraction Belle: unpublished conference results 2003ff — model-INDEPENDENT

use instead minimal cuts $p_{\psi}^* > 2.0 \text{ GeV}$ && $M_{\text{recoil}} > 3.7 \text{ GeV}/c^2$, fit backgrounds:

Determine double-charm fraction independent of cc fragmentation:

$$\frac{\sigma(e^+e^- \to J/\psi c\bar{c})}{\sigma(e^+e^- \to J/\psi X)} \simeq \frac{0.5 \times \sum N_i}{N_{J/\psi}} = 0.5 \times \frac{(7240 \pm 1240) \times 10^3}{(4438 \pm 88) \times 10^3}$$

= 0.82 ± 0.15 ± 0.14
> 0.48 at 95% CL

cf. perturbative QCD (esp. NRQCD): hard to "move the prediction" above 0.1 [expectation: dominance of $e^+e^- \rightarrow \gamma^* \rightarrow \psi gg$ (bulk) and ψg (endpoint)]

Sideline (2): the $e^+e^- \rightarrow \psi g$ process

- ▶ ∃ residual component which seems not to be $\psi(c\overline{c})_{res}$
- it is only above cc threshold
- ▶ is this $e^+e^- \rightarrow \psi g$? if so, why the coincidence?

What's over

What's established

What's new

What's needed from theory

▲圖▶ ▲≣▶ ▲≣▶ 差|目 のQ@

- What's over
 - ▶ fundamental questions re method [Belle PRD 70, 071102(R)]
- What's established

What's new

What's needed from theory

- What's over
 - ▶ fundamental questions re method [Belle PRD 70, 071102(R)]
 - ► fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
- What's established

What's new

What's needed from theory

1 = 990

- - E > - - E > -

- What's over
 - ▶ fundamental questions re method [Belle PRD 70, 071102(R)]
 - ▶ fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
 - ▶ the idea of large $e^+e^- \rightarrow \gamma^*\gamma^* \rightarrow X$ or other confusing things
- What's established

What's new

What's needed from theory

- What's over
 - ▶ fundamental questions re method [Belle PRD 70, 071102(R)]
 - ► fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
 - ▶ the idea of large $e^+e^- \rightarrow \gamma^*\gamma^* \rightarrow X$ or other confusing things
- What's established
 - ► large $e^+e^- \rightarrow \psi \, c \overline{c} \, (\gtrsim 50\%)$ and $\psi(nS) \, (c \overline{c})_{res} \, (\mathcal{O}(20 \, \text{fb}))$
- What's new

What's needed from theory

- What's over
 - ▶ fundamental questions re method [Belle PRD 70, 071102(R)]
 - ▶ fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
 - ▶ the idea of large $e^+e^- \rightarrow \gamma^*\gamma^* \rightarrow X$ or other confusing things
- What's established
 - ► large $e^+e^- \rightarrow \psi \ c\overline{c} \ (\gtrsim 50\%)$ and $\psi(nS) \ (c\overline{c})_{res} \ (\mathcal{O}(20 \text{ fb}))$
 - there is no suppression of radially excited states

What's new

What's needed from theory

- What's over
 - ► fundamental questions re method [Belle PRD 70, 071102(R)]
 - ► fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
 - ▶ the idea of large $e^+e^- \rightarrow \gamma^*\gamma^* \rightarrow X$ or other confusing things
- What's established
 - ► large $e^+e^- \rightarrow \psi \, c \overline{c} \, (\gtrsim 50\%)$ and $\psi(nS) \, (c \overline{c})_{res} \, (\mathcal{O}(20 \, \text{fb}))$
 - there is no suppression of radially excited states

What's new

- prominent resonant contributions continue above threshold:
 - $\begin{array}{lll} \mbox{D}\overline{\rm D} \mbox{ amplitude } & \mbox{broad } 3880{-}4200 \ \mbox{MeV structure } \\ X(3940) \rightarrow \mbox{D}\overline{\rm D}^{*} & (3942^{+7}_{-6} \pm 6) & \mbox{\Gamma} = (37^{+26}_{-15} \pm 8) \ \mbox{MeV } \\ X(4160) \rightarrow \mbox{D}^{*}\overline{\rm D}^{*} & (4156^{+25}_{-20} \pm 15) & \mbox{\Gamma} = (139^{+111}_{-61} \pm 21) \ \mbox{MeV } \end{array}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What's needed from theory

- What's over
 - ► fundamental questions re method [Belle PRD 70, 071102(R)]
 - ► fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
 - ▶ the idea of large $e^+e^- \rightarrow \gamma^*\gamma^* \rightarrow X$ or other confusing things
- What's established
 - ▶ large $e^+e^- \rightarrow \psi \, c \overline{c} \, (\gtrsim 50\%)$ and $\psi(nS) \, (c \overline{c})_{res} \, (\mathcal{O}(20 \, \text{fb}))$
 - there is no suppression of radially excited states

What's new

- prominent resonant contributions continue above threshold:
 - $\begin{array}{ll} {\rm D}\overline{\rm D} \text{ amplitude} & {\rm broad \ 3880-4200 \ MeV \ structure} \\ X(3940) \to {\rm D}\overline{\rm D}^* & (3942^{+7}_{-6}\pm6) & \Gamma = (37^{+26}_{-15}\pm8)\,{\rm MeV} \\ X(4160) \to {\rm D}^*\overline{\rm D}^* & (4156^{+25}_{-20}\pm15) & \Gamma = (139^{+111}_{-61}\pm21)\,{\rm MeV} \\ \end{array}$

- ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ●目目 のへの

What's needed from theory

interpretation & tests of the new states (already underway)

- What's over
 - ▶ fundamental questions re method [Belle PRD 70, 071102(R)]
 - ► fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
 - ▶ the idea of large $e^+e^- \rightarrow \gamma^*\gamma^* \rightarrow X$ or other confusing things
- What's established
 - ▶ large $e^+e^- \rightarrow \psi \ c\overline{c} \ (\gtrsim 50\%)$ and $\psi(nS) \ (c\overline{c})_{res} \ (\mathcal{O}(20 \text{ fb}))$
 - there is no suppression of radially excited states

What's new

- prominent resonant contributions continue above threshold:
 - $\begin{array}{ll} {\rm D}\overline{\rm D} \text{ amplitude} & {\rm broad \ 3880-4200 \ MeV \ structure} \\ X(3940) \to {\rm D}\overline{\rm D}^{*} & (3942^{+7}_{-6}\pm 6) & \Gamma = (37^{+26}_{-15}\pm 8) \, {\rm MeV} \\ X(4160) \to {\rm D}^{*}\overline{\rm D}^{*} & (4156^{+25}_{-20}\pm 15) & \Gamma = (139^{+111}_{-61}\pm 21) \, {\rm MeV} \\ \end{array}$

- ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ●目目 のへの

- What's needed from theory
 - interpretation & tests of the new states (already underway)
 - ▶ predictive account of $e^+e^- \rightarrow \psi(nS)X$ amplitudes

- What's over
 - ► fundamental questions re method [Belle PRD 70, 071102(R)]
 - ► fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
 - ▶ the idea of large $e^+e^- \rightarrow \gamma^*\gamma^* \rightarrow X$ or other confusing things
- What's established
 - ► large $e^+e^- \rightarrow \psi \ c\overline{c} \ (\gtrsim 50\%)$ and $\psi(nS) \ (c\overline{c})_{res} \ (\mathcal{O}(20 \text{ fb}))$
 - there is no suppression of radially excited states

What's new

prominent resonant contributions continue above threshold:

 $\begin{array}{ll} {\rm D}\overline{\rm D} \text{ amplitude} & {\rm broad \ 3880-4200 \ MeV \ structure} \\ X(3940) \to {\rm D}\overline{\rm D}^* & (3942^{+7}_{-6}\pm 6) & \Gamma = (37^{+26}_{-15}\pm 8)\,{\rm MeV} \\ X(4160) \to {\rm D}^*\overline{\rm D}^* & (4156^{+25}_{-20}\pm 15) & \Gamma = (139^{+111}_{-61}\pm 21)\,{\rm MeV} \\ \end{array}$

- What's needed from theory
 - interpretation & tests of the new states (already underway)
 - predictive account of $e^+e^- \rightarrow \psi(nS) X$ amplitudes
 - ► implications for prodⁿ of quarkonium-like states at the LHC?

Supporting results: $e^+e^- \rightarrow 2\gamma^* \rightarrow V V'$ [BaBar]