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e+e− → ψ X production: How we came to study it
Belle: K. Abe et al., Phys. Rev. Lett. 88, 052001 (2002)

search for direct Υ(4S) → J/ψ X production (cf. old CLEO result)
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I p∗ψ > 2.0 GeV cut:

veto Υ(4S) → BB[→ ψ X ]

I ψ yield on-resonance [top]

− ψ yield off-resonance [bottom]

× on/off scale factor

= ψ yield from Υ(4S)

I B(Υ(4S) → J/ψ X )

< 1.9× 10−4 @ 95% C.L.

I i.e. all of these J/ψ are from
continuum production
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e+e− → ψ X production: What was expected

contributions from various processes (according to NRQCD):

e+e− → ψ gg → ψ g → ψ cc → ψ qq
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DOMINANT for dominant at O(10%) small√
s ≈ 10.6 GeV p∗ endpoint

so we expect the p∗ψ spectrum to have two components . . .
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e+e− → ψ X production: What was expected

e+e− → ψ gg e+e− → ψ g

!*

c

c!

g

g
!*

g

c

c!

continuous component peak/spike at endpoint
[maybe some ψ cc modification]

across a range p∗ψ ∈ [0, p∗max ], p∗max =
s−m2

ψ

2
√

s
= 4.84 GeV/c
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e+e− → ψ X production: What we saw
Belle: K. Abe et al., Phys. Rev. Lett. 88, 052001 (2002)
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I OK, so there is a
continuous component

I but there is no spike
at the p∗ψ endpoint
[we’ll return to this later]

I more striking:
σ → 0 before endpoint

I idea:
p∗ψ may not be the most
natural representation
of the data
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e+e− → ψ (cc)res: The method

I study the recoil mass Mrecoil(ψ) =
√

(
√

s − E ∗ψ)2 − (p∗ψ)2

I production at fixed
√

s = 10.58 (and 10.52) GeV
I 1–1 mapping between p∗ψ and Mrecoil(ψ)
I nontrivial upper bound on p∗ψ ≡ lower bound on Mrecoil(ψ)

I key limitation:

non-reconstruction of remainder X
−→ identification of this system is indirect

I alternative interpretations spring from this limitation
I improvements to the method rely on ameliorating it

I ψ mass-vertex constraint −→ improved σp∗ ; σMrecoil
(factor 2)

I QED processes:

I Ntrack > 4 cut to suppress low-multiplicity backgrounds
I ISR −→ high-Mrecoil tail on any structure
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e+e− → ψ (cc)res: The (unexpected) results
Belle: K. Abe et al., Phys. Rev. Lett. 89, 142001 (2002)
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below cc threshold: nothing above cc threshold: charmonia
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e+e− → ψ (cc)res vs alternative interpretations
(1) Bodwin, Lee, And Braaten, Phys. Rev. D 67, 054023 (2003)
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I straightforward diagrams neglected
I in interpretation of data
I in previous theoretical work

I e+e− annihilation
→ γ∗ → ψ X requires ξX

C = +1

→ γ∗γ∗ → ψ X allows ξX
C = ±1

I only ψ ηc significant in 2002 PRL

I idea: “. . . there are probably J/ψ + J/ψ

events that contribute to the J/ψ + ηc

signal . . . if these were taken into account,

they would increase the compatibility

between the NRQCD prediction and the

Belle measurement”
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e+e− → ψ (cc)res vs alternative interpretations
(1) Bodwin, Lee, And Braaten, Phys. Rev. D 67, 054023 (2003)
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distributions in x = cos θprod:
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ψ ηc close to 1 + cos2 θprod [γ∗ case]

ψ ψ distinctive forward peak
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e+e− → ψ (cc)res vs alternative interpretations
(2) Brodsky, Goldhaber, and Lee, Phys. Rev. Lett. 91, 112001 (2003)

mirror-image of the previous proposal . . .

!*

GJ

H
I e+e− → ψ gg process

really does dominate

I ∃ heretofore unknown
glueball state

I it’s sitting at the ηc mass

I the gg are coupling to it . . .

I . . . and that’s our signal

Bruce Yabsley Double cc production
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e+e− → ψ (cc)res vs alternative interpretations
(nemesis) Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)

1. full reconstruction of 3 ψ ηc events (cf. 2.6± 0.8 expectation)

2. full reconstruction of 0 ψ ψ events (limit is weak)

3. Mrecoil bias . 3 MeV
4. angular analysis of ψ production (θprod) & helicity (θhel):
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0 0.2 0.4 0.6 0.8 1

αprod αhel

ηc 1.4+1.1
−0.8 0.5+0.7

−0.5

χc0 −1.7± 0.5 −0.7+0.7
−0.5

ηc(2S) 1.9+2.0
−1.2 0.3+1.0

−0.7

no cos θhel → 1 feature; consistent

with αprod = αhel (per e+e− → γ∗)
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e+e− → ψ (cc)res vs alternative interpretations
(nemesis) Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)

1. full reconstruction of 3 ψ ηc events (cf. 2.6± 0.8 expectation)

2. full reconstruction of 0 ψ ψ events (limit is weak)
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|cos(#hel)|
0 0.2 0.4 0.6 0.8 1

αhel ≡ αprod expectn

ηc 0.93+0.57
−0.47 +1 (P)

χc0 −1.01+0.38
−0.33 −1 (S)

ηc(2S) 0.87+0.86
−0.63 +1 (P)

cf. α ' −0.87 for glueball G0

cf. α ' +0.25 for χc0 in NRQCD
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Results: e+e− → ψ (cc)res production
Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)
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Results: e+e− → ψ (cc)res production
BaBar: B. Aubert et al., Phys. Rev. D 72, 031101(R) (2005)
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Results: e+e− → ψ (cc)res production
[Belle and BaBar]

(cc)res N (fit yield) M (MeV/c2)

Belle BaBar Belle BaBar

ηc(1S) 235± 26 126± 20 2972± 7 2985± 4

χc0 89± 24 81± 20 3407± 11 3421± 5

ηc(2S) 164± 30 121± 27 3630± 8 3645± 6

J/ψ −14± 20 −26± 13 fixed

χc1
10±27

−5± 16 fixed

χc2 −12± 16 fixed

ψ(2S) −26± 29 30± 27 fixed

Bruce Yabsley Double cc production
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Results: e+e− → ψ (cc)res production
[Belle and BaBar]

J/ψ (cc)res ηc (1S) χc0 ηc (2S)

Belle σ × B>2 [fb] 25.6± 2.8± 3.4 6.4± 1.7± 1.0 16.5± 3.0± 2.4

BaBar σ × B>2 [fb] 17.6± 2.8+1.5
−2.1 10.3± 2.5+1.4

−1.8 16.4± 3.7+2.4
−3.0

NRQCD: σ [fb]

Braaten&Lee1 3.78± 1.26 2.40± 1.02 1.57± 0.52

. . . with relativistic corrns : 7.4+10.9
−4.1 – 7.6+11.8

−4.1

Liu,He,&Chao2 5.5 6.9 3.7

Zhang,Gao,&Chao3 14.1 – –

Bondar&Chernyak4 light cone 33 – –h
1 PRD 67, 054007 & 72, 099901(E); 2 hep-ph/0408141; 3 PRL 96, 092001; 4 PLB 612, 215–222 (2005)

i
I low-order perturbative calculations still don’t reproduce the data

I theoretical postdiction is actively pursued with varying approaches;
no longer easy to characterise the issues at stake (e.g. see discussion
Bodwin, Kang, & Lee, PRD 74, 114028 (2006) re NRQCD vs light cone)

I data is still in the driving seat . . .
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Results: e+e− → ψ(2S) (cc)res production
Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)

Mrecoil(!(2S))                         (GeV/c2)

N/
20

 M
eV

/c
2

0

5

10
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ηc (1S) χc0 ηc (2S)

significance 4.2 3.5 3.4

σ(ψ(2S) (cc)res)× B>0 [fb] 16.3± 4.6± 3.9 12.5± 3.8± 3.1 16.0± 5.1± 3.8

cf. σ(ψ(1S) (cc)res)× B>2 [fb] 25.6± 2.8± 3.4 6.4± 1.7± 1.0 16.5± 3.0± 2.4

! no suppression of radially-excited states !
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Published: new “X(3940)” state
[Belle: K. Abe et al., Phys. Rev. Lett. 98, 082001 (2007)]

standard analysis:

inclusive Mrecoil(ψ) spectrum
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Updated: Systematic use of D(∗) tagging
[BELLE–CONF–0705: PRELIMINARY]
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DATA:

I ψ recon, constraint

I D0, D+ recon

I D refit → mD

I select ψD or ψD∗

I form Mrecoil(ψD(∗))

I simultaneous fit
with D-sidebands

I > 5σ peaks:
ψDD, ψD∗D,
and ψD∗D∗
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Updated: Systematic use of D(∗) tagging
[BELLE–CONF–0705: PRELIMINARY]
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resolution on M(D(∗)D(∗)) improves by a factor of 3–10
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Updated: X → DD
[BELLE–CONF–0705: PRELIMINARY]
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I yellow: Drec sidebands

I dashed: rel. B-W fit

I points: data (Drec signal)

I solid: simultaneous fit to

background (sideband)
+ threshold function
+ rel. S-wave B-W

I insignificant threshold term

I 4.4σ resonant term

M = (3878± 48)MeV

Γ = (347+316
−143) MeV

I unstable under:
— bkgd paramn changes
— bin-width changes
— extra B-W term
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Updated: X → DD
[BELLE–CONF–0705: PRELIMINARY]
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Updated: X → DD∗ (D recon.; D∗ constraint)
[BELLE–CONF–0705: PRELIMINARY]
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I points: data (Drec signal)

I solid: simultaneous fit to

background (sideband)
+ reflection
+ threshold function
+ rel. S-wave B-W
⊗ resolution function (MC)

I threshold term < 0

I fix to zero and refit:
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Updated: X → DD∗ (D recon.; D∗ constraint)
[BELLE–CONF–0705: PRELIMINARY]
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Updated: X → DD∗ (D recon.; D∗ constraint)
[BELLE–CONF–0705: PRELIMINARY]
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I solid: simultaneous fit to

background (sideband)
+ reflection
+ rel. S-wave B-W
⊗ resolution function (MC)

I 6.0σ resonant term

M = (3942+7
−6) MeV

Γ = (37+26
−15)MeV

< 76 MeV @ 90% C.L.

I consistent PRL mass & yield

I cf. published width:
15.1±10.1 (< 52 @ 90%) MeV
(non-parabolic L function)
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Updated: X → D∗D∗

[BELLE–CONF–0705: PRELIMINARY]
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I yellow: D∗rec sidebands

I green: X (3940) reflection

I points: data (D∗rec signal)

I similar fit performed

I 5.5σ NEW resonant term

M = (4156+25
−20)MeV

Γ = (139+111
−61 ) MeV

Born cross-section calculations per published analysis:

σ(e+e− → ψ X (3940)) × B(X (3940) → DD∗) = (13.9+6.4
−4.1) fb

σ(e+e− → ψ X (4160)) × B(X (4160) → D∗D∗) = (24.7+12.8
−8.3 ) fb

Again: comparable to ψ ηc and other 2(cc)res cross-sections
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Updated: systematics
[BELLE–CONF–0705: PRELIMINARY]

4

6.6 σ. The fitted width of X(3940) Γ = 36+25
−17 MeV/c2

is slightly higher than those obtained in our previous
analysis [4]. The mass of the state is in good agree-
ment with the reported mass, and the signal yield is
scaled with respect to the previous result proportionally
to the luminosity. The X(3940) signal is seen also in the
M(D∗

recDtag) spectrum with significance of 3.6 σ, its pa-
rameters are in good agreement with those yielded of the
M(DrecD∗

tag) fit. As this sample is a small subsample
of the DrecD∗

tag case we use the latter fit for cross check
only. The M(D∗

recD
∗
tag) spectrum demonstrates a clear

broad enhancement around the threshold, which we de-
note as X(4160). The X(4160) signal is seen above the
small combinatorial background and X(3940) reflection
with the statistical significance of 6.1 σ.

The Born cross-sections for the processes e+e− →
J/ψX(3940) [X(4160)] are calculated with the procedure
used in the previous analysis [2]. The reconstruction ef-
ficiencies are obtained from the MC simulation assuming
the equal branching fractions of X(3940) [X(4160)] de-
cays into charged and neutral D(∗)D(∗) pairs.

The systematic errors of the parameters and produc-
tion cross sections for X(3940) and X(4160) resonances
are summarized in Table III. To estimate the fitting sys-
tematics we study the difference in X(3940) [X(4160)]
parameters returned by the fit to the Fig. 2 b) and d) dis-
tributions under variation of the signal and background
parametrizations, the fit ranges and the histograms bins
as well as the resolution functions. We also vary the def-
initions of the signal and sidebands regions to check the
stability of the resonances parameters. Another uncer-
tainty in the determination of the masses is due to pos-
sible momentum scale bias. It was estimated in the pre-
vious paper [2] to be smaller than 3 MeV/c2. The fitting
procedure and selection requirements result in the uncer-
tainty in the signal yields that is taken into account in the
systematic error of the cross-section calculation. Another
source is the uncertainty in the efficiencies dominated by
J/ψ production and polarization angular distributions.
In the MC both angle distributions are assumed to be
flat and extreme angular distributions (1 + cos2 θ and
sin2 θ) are considered to estimate the systematic uncer-
tainty of this assumption. In the case of X(4160) another
source of the systematics uncertainty is due to the D∗+

polarization, that is also taken into account by varying
the D∗+ helicity angle distribution. Other contributions
come from the uncertainty in the track and π0 recon-
struction efficiencies; lepton and kaon identification and
in the absolute B(D(∗)).

In summary, we have observed the processes
e+e−→J/ψDD (D∗D, D∗D∗) and found significant
enhancements in M(D(∗)D(∗)) spectra around thresh-
olds in all these processes. A broad enhancement in
M(DD) is not consistent with non-resonant e+e− →
J/ψDD production, however the present statistics does

TABLE III: Summary of the systematic errors in the masses
and widths (M and Γ in MeV/c2) and production cross sec-
tions (σ in %) for X(3940) [X(4160)] resonances.

X(3940) X(4160)
Source M Γ σ M Γ σ
Fitting procedure ±4 ±6 ±5 ±12 ±18 ±2
Selection ±4 ±5 ±4 ±8 ±11 ±5
Momentum scale ±3 — — ±3 — —
Angular distributions — — ±12 — — ±16
Reconstruction — — ±6 — — ±8
Identification — — ±4 — — ±4
B(D(∗)) — — ±3 — — ±4
Total ±6 ±8 ±16 ±15 ±21 ±20

not allow to fix the resonant structure in this pro-
cess. We have confirmed our observation of the char-
monium state, X(3940) → DD∗, produced in the pro-
cess e+e−→J/ψ X(3940) with significance of 6.3 σ that
includes the systematics effects. The X(3940) mass
and width are (3.942+0.007

−0.006 ± 0.006)GeV/c2 and Γ =
(37+26

−15±8)MeV/c2. The Born cross section is calculated
to be σ(e+e− → J/ψX(3940)) × B(X(3940) → D∗D) =
(13.9+6.4

−4.1 ± 2.2) fb. These measurements are consistent
with our published results and supersede them. In this
study we have found that the inclusive peak in Mrec(J/ψ)
spectrum may consist of several states thus our previous
measurement of B(X(3940) → D∗D) may be not reli-
able. We report on observation of a new charmonium
like state X(4160) in the processes e+e−→J/ψ X(4160)
decaying into D∗D∗. The significance of this observa-
tion is 5.7 σ, that includes the systematic uncertainty of
the fit. The X(4160) parameters are M = (4.156+0.025

−0.020±
0.015)GeV/c2 and Γ = (139+111

−61 ±21)MeV/c2. The Born
cross section is σ(e+e− → J/ψX(4160)) × B(X(4160)→
D∗D∗) = (24.7+12.8

−8.3 ± 5.0) fb.
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Updated: cross-checks
[BELLE–CONF–0705: PRELIMINARY]

1. D-sidebands represent D-window backgrounds well:
I in MC: for backgrounds due to non-signal ψD(∗)D(∗)

I in data: under various subsample tests

2. charged and neutral D-subsamples agree

3. for X (3940) → DD∗: the D∗ recon, D constraint analysis
for X (3940) → DD∗: gives consistent results (ε is low)

Bruce Yabsley Double cc production
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Sideline (1): the inclusive ψ cc/ψ X fraction
Belle: K. Abe et al., Phys. Rev. Lett. 89, 042001 (2002) — model-dependent

σ(e+e− → ψ cc)/σ(e+e− → ψ X ) = 0.59+0.15
−0.13 ± 0.12
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method:

I recon+constrain ψ

I recon+constrain D(∗)

I veto B-daughters:
p∗D or p∗` > 2.6 gev

I 2D fit to obtain
ψD(∗) X yields

I fragmentn per PYTHIA

I deduce σ
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Sideline (1): the inclusive ψ cc/ψ X fraction
Belle: unpublished conference results 2003ff — model-INDEPENDENTBELLE PRL 89, 142001 (2002) established e+e− → ψ D(∗) X . . .

use instead minimal cuts p∗
ψ > 2.0GeV && Mrecoil > 3.7GeV/c2, fit backgrounds:
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associated state D0 → Kπ D0 → K3π D+ D+
s Λ+

c

Nobs
data 49.6 ± 13.3 53.0 ± 21.2 56.2 ± 15.4 23.8 ± 9.4 3.0 ± 4.2

N0
data (3.10 ± 0.83)× 103 (3.31 ± 1.32)× 103 (2.08 ± 0.57)× 103 (1.83 ± 0.72)× 103 (0.17 ± 0.23)× 103

LUND rate in cc 1.19 1.19 0.43 0.22 0.13

N(J/ψ cc)/N(J/ψ X)) 0.59 ± 0.16 0.62 ± 0.25 1.09 ± 0.30 1.87 ± 0.74 0.29 ± 0.41

AVERAGE 0.67 ± 0.12

Determine double-charm fraction independent of cc fragmentation:

σ(e+e− → J/ψ cc)

σ(e+e− → J/ψ X)
%

0.5 ×
∑

Ni

NJ/ψ
= 0.5 ×

(7240 ± 1240) × 103

(4438 ± 88) × 103

= 0.82 ± 0.15 ± 0.14
> 0.48 at 95% CL

cf. perturbative QCD (esp. NRQCD): hard to “move the prediction” above 0.1
[expectation: dominance of e+e− → γ∗ → ψ gg (bulk) and ψ g (endpoint)]

PHENO 2005 02–May–2005 Unexplained results from Belle Bruce Yabsley
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Sideline (2): the e+e− → ψ g process

unresolved puzzle of J/ ! X

X(3940)
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I ∃ residual component which seems not to be ψ (cc)res
I it is only above cc threshold

I is this e+e− → ψ g? if so, why the coincidence?
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Summary
I What’s over

I fundamental questions re method [Belle PRD 70, 071102(R)]

I fear that “some mistake” was made [BaBar PRD 72, 031101(R)]

I the idea of large e+e− → γ∗γ∗ → X or other confusing things

I What’s established

I large e+e− → ψ cc (& 50%) and ψ(nS) (cc)res (O(20 fb))
I there is no suppression of radially excited states

I What’s new

I prominent resonant contributions continue above threshold:

DD amplitude broad 3880–4200 MeV structure

X (3940) → DD∗ (3942+7
−6 ± 6) Γ = (37+26

−15 ± 8)MeV
X (4160) → D∗D∗ (4156+25

−20 ± 15) Γ = (139+111
−61 ± 21)MeV

I What’s needed from theory

I interpretation & tests of the new states (already underway)
I predictive account of e+e− → ψ(nS)X amplitudes
I implications for prodn of quarkonium-like states at the LHC?

Bruce Yabsley Double cc production
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