Double $c \bar{c}$ production in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilations at high energy

Bruce Yabsley
Belle collaboration / University of Sydney

Charm 2007 Workshop, Cornell University, 5th August 2007

Outline

History

Continuum $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi X$ production
Two-body $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$ production
Baseline results
The new cutting edge: states above open-charm threshold Published results on " X (3940)"
Updated method
Updated results: $\psi \mathrm{D} \overline{\mathrm{D}}, \psi \mathrm{D} \overline{\mathrm{D}}^{*}, \psi \mathrm{D}^{*} \overline{\mathrm{D}}^{*}$
Cross-checks

Sidelines

The inclusive $\psi c \bar{c} / \psi X$ fraction
The $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi$ g process
Summary

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi X$ production: How we came to study it

Belle: K. Abe et al., Phys. Rev. Lett. 88, 052001 (2002)
search for direct $\Upsilon(4 S) \rightarrow J / \psi X$ production ($c f$. old CLEO result)

- $p_{\psi}^{*}>2.0 \mathrm{GeV}$ cut: veto $\Upsilon(4 S) \rightarrow \mathrm{B} \overline{\mathrm{B}}[\rightarrow \psi X]$
- $\quad \psi$ yield on-resonance [top]
$-\psi$ yield off-resonance [bottom]
\times on/off scale factor
$=\psi$ yield from $\Upsilon(4 S)$
- $\mathcal{B}(\Upsilon(4 S) \rightarrow J / \psi X)$
$<1.9 \times 10^{-4}$ @ 95% C.L.
- i.e. all of these J / ψ are from continuum production

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi X$ production: What was expected

contributions from various processes (according to NRQCD):
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi g \boldsymbol{g}$
$\rightarrow \psi g$
$\rightarrow \psi c \bar{c}$
$\rightarrow \psi q \bar{q}$

$\begin{array}{ll}\text { DOMINANT for } & \text { dominant at } \\ \sqrt{s} \approx 10.6 \mathrm{GeV} & p^{*} \text { endpoint }\end{array}$
$\begin{array}{ll}\text { DOMINANT for } & \text { dominant at } \\ \sqrt{s} \approx 10.6 \mathrm{GeV} & p^{*} \text { endpoint }\end{array}$
$\mathcal{O}(10 \%) \quad$ small
so we expect the p_{ψ}^{*} spectrum to have two components ...

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi X$ production: What was expected

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi g g
$$

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi g
$$

$$
J / \psi^{(1,8)}
$$

$$
J / \psi^{(8)}
$$

continuous component
peak/spike at endpoint
[maybe some $\psi c \bar{c}$ modification]

$$
\text { across a range } p_{\psi}^{*} \in\left[0, p_{\max }^{*}\right], p_{\max }^{*}=\frac{s-m_{\psi}^{2}}{2 \sqrt{s}}=4.84 \mathrm{GeV} / c
$$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi X$ production: What we saw

Belle: K. Abe et al., Phys. Rev. Lett. 88, 052001 (2002)

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi X$ production: What we saw

Belle: K. Abe et al., Phys. Rev. Lett. 88, 052001 (2002)

- OK, so there is a continuous component

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi X$ production: What we saw

Belle: K. Abe et al., Phys. Rev. Lett. 88, 052001 (2002)

- OK, so there is a continuous component
- but there is no spike at the p_{ψ}^{*} endpoint [we'll return to this later]

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi X$ production: What we saw

Belle: K. Abe et al., Phys. Rev. Lett. 88, 052001 (2002)

- OK, so there is a continuous component
- but there is no spike at the p_{ψ}^{*} endpoint [we'll return to this later]
- more striking:
$\sigma \rightarrow 0$ before endpoint

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi X$ production: What we saw

Belle: K. Abe et al., Phys. Rev. Lett. 88, 052001 (2002)

- OK, so there is a continuous component
- but there is no spike at the p_{ψ}^{*} endpoint [we'll return to this later]
- more striking: $\sigma \rightarrow 0$ before endpoint
- idea:
p_{ψ}^{*} may not be the most natural representation of the data

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$: The method

- study the recoil mass $M_{\text {recoil }}(\psi)=\sqrt{\left(\sqrt{s}-E_{\psi}^{*}\right)^{2}-\left(p_{\psi}^{*}\right)^{2}}$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$: The method

- study the recoil mass $M_{\text {recoil }}(\psi)=\sqrt{\left(\sqrt{s}-E_{\psi}^{*}\right)^{2}-\left(p_{\psi}^{*}\right)^{2}}$
- production at fixed $\sqrt{s}=10.58$ (and 10.52) GeV
- 1-1 mapping between p_{ψ}^{*} and $M_{\text {recoil }}(\psi)$
- nontrivial upper bound on $p_{\psi}^{*} \equiv$ lower bound on $M_{\text {recoil }}(\psi)$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$: The method

- study the recoil mass $M_{\text {recoil }}(\psi)=\sqrt{\left(\sqrt{s}-E_{\psi}^{*}\right)^{2}-\left(p_{\psi}^{*}\right)^{2}}$
- production at fixed $\sqrt{s}=10.58$ (and 10.52) GeV
- 1-1 mapping between p_{ψ}^{*} and $M_{\text {recoil }}(\psi)$
- nontrivial upper bound on $p_{\psi}^{*} \equiv$ lower bound on $M_{\text {recoil }}(\psi)$
- key limitation:
non-reconstruction of remainder X
\longrightarrow identification of this system is indirect

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$: The method

- study the recoil mass $M_{\text {recoil }}(\psi)=\sqrt{\left(\sqrt{s}-E_{\psi}^{*}\right)^{2}-\left(p_{\psi}^{*}\right)^{2}}$
- production at fixed $\sqrt{s}=10.58$ (and 10.52) GeV
- 1-1 mapping between p_{ψ}^{*} and $M_{\text {recoil }}(\psi)$
- nontrivial upper bound on $p_{\psi}^{*} \equiv$ lower bound on $M_{\text {recoil }}(\psi)$
- key limitation:
non-reconstruction of remainder X
\longrightarrow identification of this system is indirect
- alternative interpretations spring from this limitation

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$: The method

- study the recoil mass $M_{\text {recoil }}(\psi)=\sqrt{\left(\sqrt{s}-E_{\psi}^{*}\right)^{2}-\left(p_{\psi}^{*}\right)^{2}}$
- production at fixed $\sqrt{s}=10.58$ (and 10.52) GeV
- 1-1 mapping between p_{ψ}^{*} and $M_{\text {recoil }}(\psi)$
- nontrivial upper bound on $p_{\psi}^{*} \equiv$ lower bound on $M_{\text {recoil }}(\psi)$
- key limitation:
non-reconstruction of remainder X
\longrightarrow identification of this system is indirect
- alternative interpretations spring from this limitation
- improvements to the method rely on ameliorating it

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$: The method

- study the recoil mass $M_{\text {recoil }}(\psi)=\sqrt{\left(\sqrt{s}-E_{\psi}^{*}\right)^{2}-\left(p_{\psi}^{*}\right)^{2}}$
- production at fixed $\sqrt{s}=10.58$ (and 10.52) GeV
- 1-1 mapping between p_{ψ}^{*} and $M_{\text {recoil }}(\psi)$
- nontrivial upper bound on $p_{\psi}^{*} \equiv$ lower bound on $M_{\text {recoil }}(\psi)$
- key limitation:
non-reconstruction of remainder X
\longrightarrow identification of this system is indirect
- alternative interpretations spring from this limitation
- improvements to the method rely on ameliorating it
- ψ mass-vertex constraint \longrightarrow improved $\sigma_{p^{*}} ; \sigma_{M_{\text {recoil }}}($ factor 2)

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}:$ The method

- study the recoil mass $M_{\text {recoil }}(\psi)=\sqrt{\left(\sqrt{s}-E_{\psi}^{*}\right)^{2}-\left(p_{\psi}^{*}\right)^{2}}$
- production at fixed $\sqrt{s}=10.58$ (and 10.52) GeV
- 1-1 mapping between p_{ψ}^{*} and $M_{\text {recoil }}(\psi)$
- nontrivial upper bound on $p_{\psi}^{*} \equiv$ lower bound on $M_{\text {recoil }}(\psi)$
- key limitation:
non-reconstruction of remainder X
\longrightarrow identification of this system is indirect
- alternative interpretations spring from this limitation
- improvements to the method rely on ameliorating it
- ψ mass-vertex constraint \longrightarrow improved $\sigma_{p^{*}} ; \sigma_{M_{\text {recoil }}}($ factor 2$)$
- QED processes:
- $N_{\text {track }}>4$ cut to suppress low-multiplicity backgrounds

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$: The method

- study the recoil mass $M_{\text {recoil }}(\psi)=\sqrt{\left(\sqrt{s}-E_{\psi}^{*}\right)^{2}-\left(p_{\psi}^{*}\right)^{2}}$
- production at fixed $\sqrt{s}=10.58$ (and 10.52) GeV
- 1-1 mapping between p_{ψ}^{*} and $M_{\text {recoil }}(\psi)$
- nontrivial upper bound on $p_{\psi}^{*} \equiv$ lower bound on $M_{\text {recoil }}(\psi)$
- key limitation:
non-reconstruction of remainder X
\longrightarrow identification of this system is indirect
- alternative interpretations spring from this limitation
- improvements to the method rely on ameliorating it
- ψ mass-vertex constraint \longrightarrow improved $\sigma_{p^{*}} ; \sigma_{M_{\text {recoil }}}($ factor 2$)$
- QED processes:
- $N_{\text {track }}>4$ cut to suppress low-multiplicity backgrounds
- ISR \longrightarrow high- $M_{\text {recoil }}$ tail on any structure

Belle: K. Abe et al., Phys. Rev. Lett. 89, 142001 (2002)

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$ vs alternative interpretations

(1) Bodwin, Lee, And Braaten, Phys. Rev. D 67, 054023 (2003)

- straightforward diagrams neglected
- in interpretation of data
- in previous theoretical work
- $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

$$
\begin{array}{lll}
\rightarrow \gamma^{*} & \rightarrow \psi X & \text { requires }
\end{array} \xi_{C}^{X}=+1
$$

- only $\psi \eta_{c}$ significant in 2002 PRL
- idea: ". . there are probably $J / \psi+J / \psi$ events that contribute to the $J / \psi+\eta_{c}$ signal ... if these were taken into account, they would increase the compatibility between the NRQCD prediction and the Belle measurement"

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$ vs alternative interpretations

(1) Bodwin, Lee, And Braaten, Phys. Rev. D 67, 054023 (2003)

distributions in $x=\cos \theta_{\text {prod }}$:

$\psi \eta_{c}$ close to $1+\cos ^{2} \theta_{\text {prod }}\left[\gamma^{*}\right.$ case]
$\psi \psi$ distinctive forward peak

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$ vs alternative interpretations

(2) Brodsky, Goldhaber, and Lee, Phys. Rev. Lett. 91, 112001 (2003)
mirror-image of the previous proposal ...

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi g g$ process really does dominate
- \exists heretofore unknown glueball state
- it's sitting at the η_{c} mass
- the $g g$ are coupling to it ...
- ... and that's our signal

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$ vs alternative interpretations

 (nemesis) Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)1. full reconstruction of $3 \psi \eta_{c}$ events (cf. 2.6 ± 0.8 expectation)
2. full reconstruction of $0 \psi \psi$ events (limit is weak)
3. $M_{\text {recoil }}$ bias $\lesssim 3 \mathrm{MeV}$
4. angular analysis of ψ production $\left(\theta_{\text {prod }}\right) \&$ helicity $\left(\theta_{\text {hel }}\right)$:

	$\alpha_{\text {prod }}$	$\alpha_{\text {hel }}$
η_{c}	$1.4_{-0.8}^{+1.1}$	$0.5_{-0.5}^{+0.7}$
$\chi_{c 0}$	-1.7 ± 0.5	$-0.7_{-0.5}^{+0.7}$
$\eta_{c}(2 S)$	$1.9_{-1.2}^{+2.0}$	$0.3_{-0.7}^{+1.0}$

no $\cos \theta_{\text {hel }} \rightarrow 1$ feature; consistent with $\alpha_{\text {prod }}=\alpha_{\text {hel }}\left(\operatorname{per} \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*}\right)$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$ vs alternative interpretations

 (nemesis) Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)1. full reconstruction of $3 \psi \eta_{c}$ events (cf. 2.6 ± 0.8 expectation)
2. full reconstruction of $0 \psi \psi$ events (limit is weak)
3. $M_{\text {recoil }}$ bias $\lesssim 3 \mathrm{MeV}$
4. angular analysis of ψ production $\left(\theta_{\text {prod }}\right) \&$ helicity $\left(\theta_{\text {hel }}\right)$:

	$\alpha_{\text {hel }} \equiv \alpha_{\text {prod }}$	expect n
η_{c}	$0.93_{-0.47}^{+0.57}$	$+1(\mathrm{P})$
$\chi_{c 0}$	$-1.01_{-0.33}^{+0.38}$	$-1(\mathrm{~S})$
$\eta_{c}(2 S)$	$0.87_{-0.63}^{+0.86}$	$+1(\mathrm{P})$
$c f . \alpha \simeq-0.87$ for glueball \mathcal{G}_{0}		
$c f . ~$		
c $\alpha+0.25$ for $\chi_{c 0}$ in NRQCD		

Results: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$ production

Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)

systematics \ni fits $\begin{cases}\text { with the } J / \psi, \psi(2 S), \chi_{c 1, c 2} & \text { (dashed: UL) } \\ \text { without } \xi_{C}=-1 \text { or } \chi_{c 1, c 2} \text { states } & \text { (solid) }\end{cases}$

Results: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$ production

BaBar: B. Aubert et al., Phys. Rev. D 72, 031101(R) (2005)

$J / \psi, \chi_{c 1, c 2}, \psi(2 S)$ added to the fit in turn: none is significant

Results: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$ production

[Belle and BaBar]

$(c \bar{c})_{\text {res }}$	$N($ fit yield $)$	$M\left(\mathrm{MeV} / c^{2}\right)$		
	Belle	BABAR	Belle	BABAR
$\eta_{c}(1 S)$	235 ± 26	126 ± 20	2972 ± 7	2985 ± 4
$\chi_{c 0}$	89 ± 24	81 ± 20	3407 ± 11	3421 ± 5
$\eta_{c}(2 S)$	164 ± 30	121 ± 27	3630 ± 8	3645 ± 6
J / ψ	-14 ± 20	-26 ± 13	fixed	
$\chi_{c 1}$		-5 ± 16	fixed	
$\chi_{c 2}$	10 ± 27	-12 ± 16	fixed	
$\psi(2 S)$	-26 ± 29	30 ± 27	fixed	

Results: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(c \bar{c})_{\text {res }}$ production

[Belle and BaBar]

$J / \psi(c \bar{c})_{\text {res }}$	$\eta_{c}(1 S)$	$\chi_{c 0}$	$\eta_{c}(2 S)$
Belle $\quad \sigma \times \mathcal{B}_{>2}[\mathrm{fb}]$	$25.6 \pm 2.8 \pm 3.4$	$6.4 \pm 1.7 \pm 1.0$	$16.5 \pm 3.0 \pm 2.4$
BABAR $\quad \sigma \times \mathcal{B}_{>2}[\mathrm{fb}]$	$17.6 \pm 2.8{ }_{-2.1}^{+1.5}$	$10.3 \pm 2.5_{-1.8}^{+1.4}$	$16.4 \pm 3.7_{-3.0}^{+2.4}$
NRQCD: $\quad \sigma[\mathrm{fb}]$			
Braaten\&Lee ${ }^{1}$	3.78 ± 1.26	2.40 ± 1.02	1.57 ± 0.52
\ldots with relativistic corrns:	$7.4_{-4.1}^{+10.9}$	-	$7.6_{-4.1}^{+11.8}$
Liu, $\mathrm{He}, \& \mathrm{Chao}{ }^{2}$	5.5	6.9	3.7
Zhang, Gao, \& Chao ${ }^{3}$	14.1	-	-
Bondar\&Chernyak ${ }^{4}$ light cone	33	-	-

${ }^{1}$ PRD 67, 054007 \& 72, 099901(E); ${ }^{2}$ hep-ph/0408141; ${ }^{3}$ PRL 96, 092001; ${ }^{4}$ PLB 612, 215-222 (2005) $]$

- low-order perturbative calculations still don't reproduce the data
- theoretical postdiction is actively pursued with varying approaches; no longer easy to characterise the issues at stake (e.g. see discussion Bodwin, Kang, \& Lee, PRD 74, 114028 (2006) re NRQCD vs light cone)
- data is still in the driving seat ...

Results: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(2 S)(c \bar{c})_{\text {res }}$ production

Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)

Results: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(2 S)(c \bar{c})_{\text {res }}$ production

Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)

	$\eta_{c}(1 S)$	$\chi_{c 0}$	$\eta_{c}(2 S)$
significance	4.2	3.5	3.4
$\sigma\left(\psi(2 S)(c \bar{c})_{\text {res }}\right) \times \mathcal{B}_{>0}[\mathrm{fb}]$	$16.3 \pm 4.6 \pm 3.9$	$12.5 \pm 3.8 \pm 3.1$	$16.0 \pm 5.1 \pm 3.8$
$c f . \sigma\left(\psi(1 S)(c \bar{c})_{\text {res }}\right) \times \mathcal{B}_{>2}[\mathrm{fb}]$	$25.6 \pm 2.8 \pm 3.4$	$6.4 \pm 1.7 \pm 1.0$	$16.5 \pm 3.0 \pm 2.4$

Results: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(2 S)(c \bar{c})_{\text {res }}$ production

Belle: K. Abe et al., Phys. Rev. D 70, 071102(R) (2004)

	$\eta_{c}(1 S)$	$\chi_{c 0}$	$\eta_{c}(2 S)$
significance	4.2	3.5	3.4

$$
\begin{array}{rccc}
\sigma\left(\psi(2 S)(c \bar{c})_{\text {res }}\right) \times \mathcal{B}_{>0}[\mathrm{fb}] & 16.3 \pm 4.6 \pm 3.9 & 12.5 \pm 3.8 \pm 3.1 & 16.0 \pm 5.1 \pm 3.8 \\
c f . \\
\sigma\left(\psi(1 S)(c \bar{c})_{\text {res }}\right) \times \mathcal{B}_{>2}[\mathrm{fb}] & 25.6 \pm 2.8 \pm 3.4 & 6.4 \pm 1.7 \pm 1.0 & 16.5 \pm 3.0 \pm 2.4 \\
& \text { ! no suppression of radially-excited states ! }
\end{array}
$$

Published: new "X(3940)" state

[Belle: K. Abe et al., Phys. Rev. Lett. 98, 082001 (2007)]
standard analysis:
inclusive $M_{\text {recoil }}(\psi)$ spectrum

5.0σ peak at $(3936 \pm 14) \mathrm{MeV}$

extra tag \& constraint:

$$
M_{\text {recoil }}(\psi \mathrm{D}) \rightarrow m_{\mathrm{D}^{(*)}}
$$

$X(3940) \rightarrow \mathrm{D}^{*} \overline{\mathrm{D}} ; \nrightarrow \mathrm{D}^{*} \overline{\mathrm{D}}$

Updated: Systematic use of $\mathrm{D}^{(*)}$ tagging [BELLE-CONF-0705: PRELIMINARY]

DATA:

- ψ recon, constraint
- $\mathrm{D}^{0}, \mathrm{D}^{+}$recon
- D refit $\rightarrow m_{\mathrm{D}}$
- select $\psi \mathrm{D}$ or $\psi \mathrm{D}^{*}$
- form $M_{\text {recoil }}\left(\psi \mathrm{D}^{(*)}\right)$
- simultaneous fit with D-sidebands
- $>5 \sigma$ peaks: $\psi \mathrm{D} \overline{\mathrm{D}}, \psi \mathrm{D}^{*} \overline{\mathrm{D}}$, and $\psi \mathrm{D}^{*} \overline{\mathrm{D}}^{*}$

Updated: Systematic use of $\mathrm{D}^{(*)}$ tagging

[BELLE-CONF-0705: PRELIMINARY]

MONTE CARLO:

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D} \overline{\mathrm{D}}$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D}^{*} \overline{\mathrm{D}}$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D}^{*} \overline{\mathrm{D}}^{*}$
- $\sigma \sim 30 \mathrm{MeV}$

$$
<\left(m_{\mathrm{D}}^{*}-m_{\mathrm{D}}\right)
$$

Updated: Systematic use of $\mathrm{D}^{(*)}$ tagging

[BELLE-CONF-0705: PRELIMINARY]

MONTE CARLO:

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D} \overline{\mathrm{D}}$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D}^{*} \overline{\mathrm{D}}$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D}^{*} \overline{\mathrm{D}}^{*}$
- $\sigma \sim 30 \mathrm{MeV}$

$$
<\left(m_{\mathrm{D}}^{*}-m_{\mathrm{D}}\right)
$$

- tag processes requiring $\left|M_{\text {recoil }}\left(\psi \mathrm{D}^{(*)}\right)-m_{\mathrm{tag}}\right|<70 \mathrm{MeV}$

Updated: Systematic use of $\mathrm{D}^{(*)}$ tagging
 [BELLE-CONF-0705: PRELIMINARY]

MONTE CARLO:

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D} \overline{\mathrm{D}}$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D}^{*} \overline{\mathrm{D}}$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D}^{*} \overline{\mathrm{D}}^{*}$
- $\sigma \sim 30 \mathrm{MeV}$

$$
<\left(m_{\mathrm{D}}^{*}-m_{\mathrm{D}}\right)
$$

- tag processes requiring $\left|M_{\text {recoil }}\left(\psi \mathrm{D}^{(*)}\right)-m_{\text {tag }}\right|<70 \mathrm{MeV}$
- ISR produces (e.g.) $10 \% \psi \mathrm{D} \overline{\mathrm{D}} \rightarrow \psi \mathrm{D}^{*}$ cross-feed

Updated: Systematic use of $\mathrm{D}^{(*)}$ tagging
 [BELLE-CONF-0705: PRELIMINARY]

MONTE CARLO:

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D} \overline{\mathrm{D}}$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D}^{*} \overline{\mathrm{D}}$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D}^{*} \overline{\mathrm{D}}^{*}$
- $\sigma \sim 30 \mathrm{MeV}$

$$
<\left(m_{\mathrm{D}}^{*}-m_{\mathrm{D}}\right)
$$

- tag processes requiring $\left|M_{\text {recoil }}\left(\psi \mathrm{D}^{(*)}\right)-m_{\text {tag }}\right|<70 \mathrm{MeV}$
- ISR produces (e.g.) $10 \% \psi \mathrm{D} \overline{\mathrm{D}} \rightarrow \psi \mathrm{D}^{*}$ cross-feed
- constrain $M_{\text {recoil }}\left(\psi \mathrm{D}^{(*)}\right) \rightarrow m_{\text {tag }} \ldots$

Updated: Systematic use of $\mathrm{D}^{(*)}$ tagging

[BELLE-CONF-0705: PRELIMINARY]

MONTE CARLO:

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D} \overline{\mathrm{D}}$ $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D}^{*} \overline{\mathrm{D}}$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D}^{*} \overline{\mathrm{D}}^{*}$
- $\sigma \sim 30 \mathrm{MeV}$

$$
<\left(m_{\mathrm{D}}^{*}-m_{\mathrm{D}}\right)
$$

- tag processes requiring $\left|M_{\text {recoil }}\left(\psi \mathrm{D}^{(*)}\right)-m_{\text {tag }}\right|<70 \mathrm{MeV}$
- ISR produces (e.g.) $10 \% \psi \mathrm{D} \overline{\mathrm{D}} \rightarrow \psi \mathrm{D}^{*}$ cross-feed
- constrain $M_{\text {recoil }}\left(\psi \mathrm{D}^{(*)}\right) \rightarrow m_{\text {tag }} \ldots$ resolution on $M\left(\mathrm{D}^{(*)} \overline{\mathrm{D}}^{(*)}\right)$ improves by a factor of 3-10

Updated: $X \rightarrow \mathrm{D} \overline{\mathrm{D}}$

[BELLE-CONF-0705: PRELIMINARY]

- yellow: $\mathrm{D}_{\text {rec }}$ sidebands
- dashed: rel. B-W fit
- points: data ($\mathrm{D}_{\text {rec }}$ signal)
- solid: simultaneous fit to background (sideband) + threshold function + rel. S-wave B-W

Updated: $X \rightarrow \mathrm{D} \overline{\mathrm{D}}$
[BELLE-CONF-0705: PRELIMINARY]

- yellow: $\mathrm{D}_{\text {rec }}$ sidebands
- dashed: rel. B-W fit
- points: data ($\mathrm{D}_{\text {rec }}$ signal)
- solid: simultaneous fit to background (sideband)
+ threshold function
+ rel. S-wave B-W
- insignificant threshold term
- 4.4σ resonant term

$$
\begin{aligned}
M & =(3878 \pm 48) \mathrm{MeV} \\
\Gamma & =\left(347_{-143}^{+16}\right) \mathrm{MeV}
\end{aligned}
$$

- unstable under:
- bkgd param ${ }^{n}$ changes
- bin-width changes
- extra B-W term

Updated: $X \rightarrow \mathrm{D}^{*}$ (D recon.; $\overline{\mathrm{D}}^{*}$ constraint)

 [BELLE-CONF-0705: PRELIMINARY]

- yellow: $\mathrm{D}_{\text {rec }}$ sidebands
- green: $\mathrm{D} \overline{\mathrm{D}}$ reflection
- dashed: $A \sqrt{M-2 m_{\mathrm{D}}} \cdot e^{-B M}+$ reflection fit
- points: data ($\mathrm{D}_{\text {rec }}$ signal)
- solid: simultaneous fit to background (sideband)
+ reflection
+ threshold function
+ rel. S-wave B-W
\otimes resolution function (MC)

Updated: $X \rightarrow \mathrm{D}^{*}$ (D recon.; $\overline{\mathrm{D}}^{*}$ constraint)

 [BELLE-CONF-0705: PRELIMINARY]

- yellow: $\mathrm{D}_{\text {rec }}$ sidebands
- green: $\mathrm{D} \overline{\mathrm{D}}$ reflection
- dashed: $A \sqrt{M-2 m_{\mathrm{D}}} \cdot e^{-B M}+$ reflection fit
- points: data ($\mathrm{D}_{\text {rec }}$ signal)
- solid: simultaneous fit to background (sideband) + reflection
+ threshold function
+ rel. S-wave B-W
\otimes resolution function (MC)
- threshold term <0
- fix to zero and refit:

Updated: $X \rightarrow \mathrm{D}^{*}$ (D recon.; $\overline{\mathrm{D}}^{*}$ constraint)

 [BELLE-CONF-0705: PRELIMINARY]

- solid: simultaneous fit to background (sideband) + reflection
+ rel. S-wave B-W
\otimes resolution function (MC)
- 6.0σ resonant term

$$
\begin{aligned}
M & =\left(3942_{-6}^{+7}\right) \mathrm{MeV} \\
\Gamma & =\left(37_{-15}^{+26}\right) \mathrm{MeV} \\
& <76 \mathrm{MeV} @ 90 \% \text { C.L. }
\end{aligned}
$$

- consistent PRL mass \& yield
- cf. published width:
15.1 ± 10.1 (<52 @ 90\%) MeV
(non-parabolic \mathcal{L} function)

Updated: $X \rightarrow \mathrm{D}^{*} \overline{\mathrm{D}}^{*}$

[BELLE-CONF-0705: PRELIMINARY]

- yellow: $\mathrm{D}_{\text {rec }}^{*}$ sidebands
- green: $X(3940)$ reflection
- points: data ($\mathrm{D}_{\text {rec }}^{*}$ signal)
- similar fit performed
- 5.5σ NEW resonant term

$$
\begin{aligned}
M & =\left(4156_{-20}^{+25}\right) \mathrm{MeV} \\
\Gamma & =\left(139_{-61}^{+111}\right) \mathrm{MeV}
\end{aligned}
$$

Born cross-section calculations per published analysis:

$$
\begin{aligned}
& \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi X(3940)\right) \times \mathcal{B}\left(X(3940) \rightarrow \mathrm{D}^{*}\right)=\left(13.9_{-4.1}^{+6.4}\right) \mathrm{fb} \\
& \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi X(4160)\right) \times \mathcal{B}\left(X(4160) \rightarrow \mathrm{D}^{*} \overline{\mathrm{D}}^{*}\right)=\left(24.7_{-8.3}^{+2.8}\right) \mathrm{fb}
\end{aligned}
$$

Again: comparable to $\psi \eta_{c}$ and other $2(c \bar{c})_{\text {res }}$ cross-sections

Updated: systematics
 [BELLE-CONF-0705: PRELIMINARY]

	$X(3940)$			$X(4160)$		
Source	M	Γ	σ	M	Γ	σ
Fitting procedure	± 4	± 6	± 5	± 12	± 18	± 2
Selection	± 4	± 5	± 4	± 8	± 11	± 5
Momentum scale	± 3	-	-	± 3	-	-
Angular distributions	-	-	± 12	-	-	± 16
Reconstruction	-	-	± 6	-	-	± 8
Identification	-	-	± 4	-	-	± 4
$\mathcal{B}\left(D^{(*)}\right)$	-	-	± 3	-	-	± 4
Total	± 6	± 8	± 16	± 15	± 21	± 20

Updated: cross-checks
 [BELLE-CONF-0705: PRELIMINARY]

1. D-sidebands represent D -window backgrounds well:

- in MC: for backgrounds due to non-signal $\psi \mathrm{D}^{(*)} \overline{\mathrm{D}}^{(*)}$
- in data: under various subsample tests

2. charged and neutral D-subsamples agree
3. for $X(3940) \rightarrow \mathrm{D} \overline{\mathrm{D}}^{*}$: the D^{*} recon, D constraint analysis gives consistent results (ϵ is low)

Sideline (1): the inclusive $\psi c \bar{c} / \psi X$ fraction

Belle: K. Abe et al., Phys. Rev. Lett. 89, 042001 (2002) - model-dependent

$$
\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi c \bar{c}\right) / \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi X\right)=0.59_{-0.13}^{+0.15} \pm 0.12
$$

method:

- recon+constrain ψ
- recon+constrain $\mathrm{D}^{(*)}$
- veto B-daughters:
p_{D}^{*} or $p_{\ell}^{*}>2.6 \mathrm{gev}$
- 2D fit to obtain $\psi \mathrm{D}^{(*)} X$ yields
- fragment ${ }^{n}$ per PYTHIA
- deduce σ

Sideline (1): the inclusive $\psi c \bar{c} / \psi X$ fraction

 Belle: unpublished conference results 2003 ff - model-INDEPENDENTuse instead minimal cuts $p_{\psi}^{*}>2.0 \mathrm{GeV} \& \& M_{\text {recoil }}>3.7 \mathrm{GeV} / c^{2}$, fit backgrounds:

associated state	$\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi$	$\mathrm{D}^{0} \rightarrow \mathrm{~K} 3 \pi$	D^{+}	D_{s}^{+}	Λ_{c}^{+}
$N_{\text {data }}^{\text {obs }}$	49.6 ± 13.3	53.0 ± 21.2	56.2 ± 15.4	23.8 ± 9.4	3.0 ± 4.2
$N_{\text {data }}^{0}$	$(3.10 \pm 0.83) \times 10^{3}$	$(3.31 \pm 1.32) \times 10^{3}$	$(2.08 \pm 0.57) \times 10^{3}$	$(1.83 \pm 0.72) \times 10^{3}$	$(0.17 \pm 0.23) \times 10^{3}$
LUND rate in $c \bar{c}$	1.19	1.19	0.43	0.22	0.13
$N(J / \psi \bar{c}) / N(J / \psi X))$	0.59 ± 0.16	0.62 ± 0.25	1.09 ± 0.30	1.87 ± 0.74	0.29 ± 0.41
AVERAGE			0.67 ± 0.12		

Determine double-charm fraction independent of $c \bar{c}$ fragmentation:

$$
\begin{aligned}
\frac{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow J / \psi c \bar{c}\right)}{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow J / \psi X\right)} \simeq \frac{0.5 \times \sum N_{i}}{N_{J / \psi}} & =0.5 \times \frac{(7240 \pm 1240) \times 10^{3}}{(4438 \pm 88) \times 10^{3}} \\
& =0.82 \pm 0.15 \pm 0.14 \\
& >0.48 \mathrm{at} 95 \% \mathrm{CL}
\end{aligned}
$$

cf. perturbative QCD (esp. NRQCD): hard to "move the prediction" above 0.1 [expectation: dominance of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*} \rightarrow \psi g g$ (bulk) and ψg (endpoint)]

Sideline (2): the $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{g}$ process

- \exists residual component which seems not to be $\psi(c \bar{c})_{\text {res }}$
- it is only above $c \bar{c}$ threshold
- is this $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi g$? if so, why the coincidence?

Summary

- What's over
- What's established
- What's new
- What's needed from theory

Summary

- What's over
- fundamental questions re method [Belle PRD 70, 071102(R)]
- What's established
- What's new
- What's needed from theory

Summary

- What's over
- fundamental questions re method [Belle PRD 70, 071102(R)]
- fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
- What's established
- What's new
- What's needed from theory

Summary

- What's over
- fundamental questions re method [Belle PRD 70, 071102(R)]
- fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
- the idea of large $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*} \gamma^{*} \rightarrow X$ or other confusing things
- What's established
- What's new
- What's needed from theory

Summary

- What's over
- fundamental questions re method [Belle PRD 70, 071102(R)]
- fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
- the idea of large $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*} \gamma^{*} \rightarrow X$ or other confusing things
- What's established
- large $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi c \bar{c}(\gtrsim 50 \%)$ and $\psi(n S)(c \bar{c})_{\text {res }}(\mathcal{O}(20 \mathrm{fb}))$
- What's new
- What's needed from theory

Summary

- What's over
- fundamental questions re method [Belle PRD 70, 071102(R)]
- fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
- the idea of large $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*} \gamma^{*} \rightarrow X$ or other confusing things
- What's established
- large $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi c \bar{c}(\gtrsim 50 \%)$ and $\psi(n S)(c \bar{c})_{\text {res }}(\mathcal{O}(20 \mathrm{fb}))$
- there is no suppression of radially excited states
- What's new
- What's needed from theory

Summary

- What's over
- fundamental questions re method [Belle PRD 70, 071102(R)]
- fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
- the idea of large $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*} \gamma^{*} \rightarrow X$ or other confusing things
- What's established
- large $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi c \bar{c}(\gtrsim 50 \%)$ and $\psi(n S)(c \bar{c})_{\text {res }}(\mathcal{O}(20 \mathrm{fb}))$
- there is no suppression of radially excited states
- What's new
- prominent resonant contributions continue above threshold:

$$
\begin{array}{lll}
\mathrm{D} \overline{\mathrm{D}} \text { amplitude } & \text { broad } 3880-4200 \mathrm{MeV} \text { structure } \\
X(3940) \rightarrow \overline{\mathrm{D}}^{*} & \left(3942_{-6}^{+7} \pm 6\right) & \Gamma=\left(37_{-15}^{+26} \pm 8\right) \mathrm{MeV} \\
X(4160) \rightarrow \mathrm{D}^{*} \overline{\mathrm{D}}^{*} & \left(4156_{-20}^{+25} \pm 15\right) & \Gamma=\left(139_{-61}^{+111} \pm 21\right) \mathrm{MeV}
\end{array}
$$

- What's needed from theory

Summary

- What's over
- fundamental questions re method [Belle PRD 70, 071102(R)]
- fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
- the idea of large $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*} \gamma^{*} \rightarrow X$ or other confusing things
- What's established
- large $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi c \bar{c}(\gtrsim 50 \%)$ and $\psi(n S)(c \bar{c})_{\text {res }}(\mathcal{O}(20 \mathrm{fb}))$
- there is no suppression of radially excited states
- What's new
- prominent resonant contributions continue above threshold:

$$
\begin{array}{lll}
\mathrm{D} \overline{\mathrm{D}} \text { amplitude } & \text { broad } 3880-4200 \mathrm{MeV} \text { structure } \\
X(3940) \rightarrow \overline{\mathrm{D}}^{*} & \left(3942_{-6}^{+7} \pm 6\right) & \Gamma=\left(37_{-15}^{+26} \pm 8\right) \mathrm{MeV} \\
X(4160) \rightarrow \mathrm{D}^{*} \overline{\mathrm{D}}^{*} & \left(4156_{-20}^{+25} \pm 15\right) & \Gamma=\left(139_{-61}^{+111} \pm 21\right) \mathrm{MeV}
\end{array}
$$

- What's needed from theory
- interpretation \& tests of the new states (already underway)

Summary

- What's over
- fundamental questions re method [Belle PRD 70, 071102(R)]
- fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
- the idea of large $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*} \gamma^{*} \rightarrow X$ or other confusing things
- What's established
- large $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi c \bar{c}(\gtrsim 50 \%)$ and $\psi(n S)(c \bar{c})_{\text {res }}(\mathcal{O}(20 \mathrm{fb}))$
- there is no suppression of radially excited states
- What's new
- prominent resonant contributions continue above threshold:

$$
\begin{array}{lll}
\mathrm{D} \overline{\mathrm{D}} \text { amplitude } & \text { broad } 3880-4200 \mathrm{MeV} \text { structure } \\
X(3940) \rightarrow \overline{\mathrm{D}}^{*} & \left(3942_{-6}^{+7} \pm 6\right) & \Gamma=\left(37_{-15}^{+26} \pm 8\right) \mathrm{MeV} \\
X(4160) \rightarrow \mathrm{D}^{*} \overline{\mathrm{D}}^{*} & \left(4156_{-20}^{+25} \pm 15\right) & \Gamma=\left(139_{-61}^{+111} \pm 21\right) \mathrm{MeV}
\end{array}
$$

- What's needed from theory
- interpretation \& tests of the new states (already underway)
- predictive account of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(n S) X$ amplitudes

Summary

- What's over
- fundamental questions re method [Belle PRD 70, 071102(R)]
- fear that "some mistake" was made [BaBar PRD 72, 031101(R)]
- the idea of large $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma^{*} \gamma^{*} \rightarrow X$ or other confusing things
- What's established
- large $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi c \bar{c}(\gtrsim 50 \%)$ and $\psi(n S)(c \bar{c})_{\text {res }}(\mathcal{O}(20 \mathrm{fb}))$
- there is no suppression of radially excited states
- What's new
- prominent resonant contributions continue above threshold:

$$
\begin{array}{lll}
\mathrm{D} \overline{\mathrm{D}} \text { amplitude } & \text { broad } 3880-4200 \mathrm{MeV} \text { structure } \\
X(3940) \rightarrow \overline{\mathrm{D}}^{*} & \left(3942_{-6}^{+7} \pm 6\right) & \Gamma=\left(37_{-15}^{+26} \pm 8\right) \mathrm{MeV} \\
X(4160) \rightarrow \mathrm{D}^{*} \overline{\mathrm{D}}^{*} & \left(4156_{-20}^{+25} \pm 15\right) & \Gamma=\left(139_{-61}^{+111} \pm 21\right) \mathrm{MeV}
\end{array}
$$

- What's needed from theory
- interpretation \& tests of the new states (already underway)
- predictive account of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(n S) X$ amplitudes
- implications for prod ${ }^{n}$ of quarkonium-like states at the LHC?

Supporting results: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 2 \gamma^{*} \rightarrow V V^{\prime}[\mathrm{BaBar}]$

