NEW EVIDENCE OF 4Q STRUCTURE IN THE X SYSTEM ad polosa
 INFN ROMA I - LA SAPIENZA

ISOSPIN VIOLATION AND TWO X'S

$$
\frac{\mathcal{B}\left(X \rightarrow \pi^{+} \pi^{-} \pi^{0} J / \psi\right)}{\mathcal{B}\left(X \rightarrow \pi^{+} \pi^{-} J / \psi\right)}=1.0 \pm 0.4 \pm 0.3
$$

FROM EARLY OBSERVATIONS BY BELLE AND BABAR (`O3-`O4)

MOLECULES
$D(I=1 / 2)$

$\overline{\mathrm{D}}^{*}(\mathrm{l}=1 / 2)$

NO PROBLEM WITH ISOSPIN VIOLATION :: 1 STATE :: SMALL DECAY RATE TO DD π

4-QUARKS

NEED TWO STATES, AND MAKE ISOSPIN VIOLATION POSSIBLE

FIND THESE TWO X'S IN DATA

A MASS difference Xu-Xd of about ~ 5 MeV was PREDICTED :: THEY COULD APPEAR IN B^{+}AND B° SEPARATELY
$B^{+} \rightarrow K^{+} X_{u}$ with rate Γ_{1}
$B^{+} \rightarrow K^{+} X_{d}$ with rate Γ_{2}
suppose $\Gamma_{1} \gg \Gamma_{2}>\Gamma_{4} \gg \Gamma_{3}$
$B^{0} \rightarrow K^{0} X_{u}$ with rate Γ_{3}
$B^{0} \rightarrow K^{0} X_{d}$ with rate Γ_{4}
Properties of the $\mathrm{X}(3872)$

$$
211 \mathbf{f b}^{-1}\left\{\begin{array}{l}
R=\mathcal{B}^{0} / \mathcal{B}^{+}=0.61 \pm 0.36 \pm 0.06 \\
\Delta m=2.7 \pm 1.3 \pm 0.2 \mathrm{MeV} / c^{2}
\end{array}\right.
$$

DIFFERENCE IN MASS FROM DATA NOT SIGNIFICATIVE

X(3872): STILL SOME SURPRISES

- Belle: looking at $\mathrm{B} \rightarrow \overline{\mathrm{D}}^{0} \mathrm{D}^{0} \pi^{0} \mathrm{~K}$

- Excess in the $\overline{\mathrm{D}}^{0} \mathrm{D}^{0} \pi^{0}$ invariant mass
- $\mathrm{M}=3875.4 \pm 0.7{ }^{+1.2}{ }_{-2.0} \mathrm{MeV} / \mathrm{c}^{2}$
- BaBar: looking at $\mathrm{B} \rightarrow \overline{\mathrm{D}}^{0} \mathrm{D}^{*} \mathrm{~K}$ $\left(\mathrm{D}^{\mathrm{O}} \rightarrow \mathrm{D}^{0} \pi{ }^{0} / \mathrm{v}\right)$

- Excess in the $\overline{\mathrm{D}}^{0} \mathrm{D}^{* 0}$ invariant mass
- $\mathrm{M}=3875.6 \pm 0.7^{+1.4}-1.5 \mathrm{MeV} / \mathrm{c}^{2}$
- Masses between Belle and BaBar in good agreement
- 2.5σ away from the $X(3872)$ world average!
- If X(3872), JP = 2^{+}disfavored hep-ex/0606055

ARE THERE TWO DIFFERENT X PARTICLES?

:: OUR HYPOTHESIS: TWO X, GENERICALLY PRODUCED IN B $\mathbf{B}^{+0}:$:

$$
\begin{aligned}
& X_{u} \equiv \mathrm{X} \text { state decaying into } D^{0} \bar{D}^{0} \pi^{0}=X(3876) \\
& X_{d} \equiv \mathrm{X} \text { state decaying into } J / \psi \pi^{+} \pi^{-}=X(3872)
\end{aligned}
$$

:: THE TWO NEUTRAL STATES IN THE 4Q-COMPLEX ::

$$
\begin{array}{ll}
X^{+}=[c u][\bar{c} \bar{d}] & X^{-}=[c d][\bar{c} \bar{u}] \\
X_{u}=[c u][\bar{c} \bar{u}] & X_{d}=[c d][\bar{c} \bar{d}]
\end{array}
$$

IT IS TRICKY THAT Xd TURNS OUT TO BE LIGHTER THAN Xu (MAYBE ELECTROSTATICS IS RESPONSIBLE FOR THIS)

HOW FAR IS THIS PICTURE CONSISTENT WITH A FOUR QUARK MODEL?

A REMARKABLE FACT

$$
\begin{aligned}
& \bar{b}+(u) \rightarrow \bar{c}+c \bar{s}+(u)+q \bar{q}(\Delta I=0) \\
& \mathcal{A}\left(B^{+} \rightarrow K^{+} X_{u}\right)=V+S=\mathcal{A}\left(B^{0} \rightarrow K^{0} X_{d}\right) \\
& \mathcal{A}\left(B^{+} \rightarrow K^{+} X_{d}\right)=V=\mathcal{A}\left(B^{0} \rightarrow K^{0} X_{u}\right) \\
& \mathcal{A}\left(B^{+} \rightarrow K^{0} X^{+}\right)=S=\mathcal{A}\left(B^{0} \rightarrow K^{+} X^{-}\right)
\end{aligned}
$$

(V)alence and (S)ea needed to build the final state Kaons :: observe
that the inverted
pattern with BO was
already observed in our
first paper

AS A CONSEQUENCE WE HAVE

$$
\begin{aligned}
& \left(\frac{B^{0}}{B^{+}}\right)_{J / \psi}=\frac{\mathcal{B}\left(B^{0} \rightarrow K^{0} X_{d}\right) \mathcal{B}\left(X_{d} \rightarrow J / \psi \pi^{+} \pi^{-}\right)}{\mathcal{B}\left(B^{+} \rightarrow K^{+} X_{d}\right) \mathcal{B}\left(X_{d} \rightarrow J / \psi \pi^{+} \pi^{-}\right)}=\frac{\mathcal{B}\left(B^{0} \rightarrow K^{0} X_{d}\right)}{\mathcal{B}\left(B^{+} \rightarrow K^{+} X_{d}\right)}= \\
& =\frac{\mathcal{B}\left(B^{+} \rightarrow K^{+} X_{u}\right)}{\mathcal{B}\left(B^{0} \rightarrow K^{0} X_{u}\right)}=\frac{\mathcal{B}\left(B^{+} \rightarrow K^{+} X_{u}\right) \mathcal{B}\left(X_{u} \rightarrow D \bar{D} \pi\right)}{\mathcal{B}\left(B^{0} \rightarrow K^{0} X_{u}\right) \mathcal{B}\left(X_{u} \rightarrow D \bar{D} \pi\right)}=\left[\left(\frac{B^{0}}{B^{+}}\right)_{D \bar{D} \pi}\right]^{-1}
\end{aligned}
$$

WHAT DATA TELL (X (3872) AND X(3876) APPEAR TO BE RELATED BY U $\Leftrightarrow D$ SYMMETRY!)

	$f=J / \psi \pi^{+} \pi^{-}$	$f=D^{0} \bar{D}^{0} \pi^{0}$
$\mathcal{B}\left(B^{ \pm} \rightarrow K^{ \pm} X\right) \mathcal{B}(X \rightarrow f) \times 10^{5}$	1.05 ± 0.18	$10.7 \pm 3.1_{3.3}^{1.9}$
$\mathcal{B}\left(B^{0} \rightarrow K^{0} X\right) \mathcal{B}(X \rightarrow f) \times 10^{5}$	-0.25 ± 0.10	$-----0.0_{5.3}^{3.1}$
$\left(B^{0} / B^{+}\right)_{f}$	$0.51 \pm 0.28 \pm 0.07$	----

DECAYS

POSSIBLE DECAY MODES:

$\lambda=3$ for spin parity $1+$

1 :: ANNIHILATION INTO GLUONS (> 2) GIVING A MULTIHADRON UNCHARMED FINAL STATE RATE EXPECTED TO BE SIMILAR TO: $\Gamma_{a n n}(X) \simeq \Gamma\left(\chi_{c 1}\right)=0.96 \mathrm{MeV}$
$2::$ ANNIHILATION $X \rightarrow g g+q \bar{q}$ BUT CCB ARE $\mathbf{J}=\mathbf{1}$ (VOLOSHIN), SO \rightarrow TO TWO GLUONS

3 :: QUARK REARRANGEMENT (VIA TUNNELING) GIVING OPEN CHARM OR Ψ 1 MeV sets the scale of the background of multihadronic

OR

(RED TWISTS)

DECAYS

QUALITATIVELY WE EXPECT THAT :: (1) MUST BE SMALL (FLAVOR) :: (2) IS LARGER THAN (3)

BY QUARK FLAVOR CONSERVATION Xd SHOULD DECAY IN $\mathrm{D}^{+} \mathrm{D}^{*-}$:: PHASE SPACE FORBIDDEN. $D^{\circ} D^{* O}$ IS SUPPRESSED TWICE BECAUSE UU \leftrightarrow DD \& BECAUSE OF A SMALL `REDUCED RATE`

WE COULD TWIST HERE C AS WELL; BUT THE *CHEAPEST* ALTERNATIVE IS STILL DD*

THE BARRIER, QUALITATIVELY FROM DATA:

$$
\left(\frac{B^{0}}{B^{+}}\right)_{D \bar{D} \pi}=\left|\frac{V}{V+S}\right|^{2} \simeq 2 \rightarrow \frac{S}{V} \simeq\left\{\begin{array}{l}
-0.3 \\
-1.7
\end{array}\right.
$$

AND

$$
R=\frac{\mathcal{B}\left(B^{+} \rightarrow K^{+} X_{u}\right) \mathcal{B}\left(X_{u} \rightarrow D^{0} \bar{D}^{0} \pi^{0}\right)}{\mathcal{B}\left(B^{+} \rightarrow K^{+} X_{d}\right) \mathcal{B}\left(X_{d} \rightarrow J / \psi \pi^{+} \pi^{-}\right)} \simeq 10
$$

and

$$
R=\left|\frac{V+S}{V}\right|^{2} \frac{\mathcal{B}\left(X_{u} \rightarrow D^{0} \bar{D}^{0} \pi^{0}\right)}{\mathcal{B}\left(X_{d} \rightarrow J / \psi \pi^{+} \pi^{-}\right)}
$$

THEREFORE IT FOLLOWS

$$
\mathcal{B}\left(X_{d} \rightarrow J / \psi \pi^{+} \pi^{-}\right) \simeq \frac{1}{20} \mathcal{B}\left(X_{u} \rightarrow D^{0} \bar{D}^{0} \pi^{0}\right)
$$

VISIBILITY LIMIT (NO SUSPECT OF TWO INTERFERING STRUCTURES)
rosso inventato...
we put the X_u here because we trust that it decays in psi

$$
\begin{gathered}
\mathcal{B}\left(B^{+} \rightarrow K^{+} X_{u}\right) \mathcal{B}\left(X_{u} \rightarrow \psi \pi \pi\right)<\frac{1}{3} \times \mathcal{B}\left(B^{+} \rightarrow K^{+} X_{d}\right) \mathcal{B}\left(X_{d} \rightarrow \psi \pi \pi\right) \\
\Rightarrow \quad \mathcal{B}\left(X_{u} \rightarrow \psi \pi \pi\right) \\
\lesssim \frac{1}{30} \times \mathcal{B}\left(X_{u} \rightarrow D \bar{D} \pi\right)
\end{gathered}
$$

EFFECTIVE DECAY LAGRANGIAN

$$
\begin{aligned}
& \mathcal{L}_{e f f}=\lambda_{\psi V}^{u} \frac{1}{M_{\rho}} \epsilon^{\mu \nu \rho \sigma}\left(p_{V}\right)_{\mu} V_{\nu} \psi_{\rho} X_{\sigma}^{(u)}+\lambda_{D^{* D}}^{u} X^{(u) \mu}\left(\bar{D}_{\mu}^{* 0} D^{0}-\bar{D}^{0} D_{\mu}^{* 0}\right) \simeq \\
& \simeq \lambda_{\psi V}^{u} \mathbf{X}^{(u)} \cdot(\mathbf{V} \times \psi)+\lambda_{D^{*} D}^{u} \mathbf{X}^{(u)} \cdot\left(\mathbf{D}^{* 0} D^{0}-\mathbf{D}^{* 0} \bar{D}^{0}\right)
\end{aligned}
$$

FROM WHAT DISCUSSED ABOVE WE EXPECT

$$
\lambda_{\psi V}^{u} \ll \lambda_{D^{*} D}^{u}
$$

how the limit in the latter slide transforms in a value for the couplings?

LET US COMPUTE THE REDUCED RATES γ OF THE DECAYS ACCORDING TO:

$$
\Gamma\left(X_{u, d} \rightarrow f\right)=|\lambda|^{2} \gamma(f)_{u, d}
$$

THE REDUCED RATES FOUND FOR THE 3-BODY DECAYS AT HAND ARE

	$f=J / \psi \pi^{+} \pi^{-}$	$f=D^{0} \bar{D}^{0} \pi^{0}$	$f=D^{+} D^{-} \pi^{0}$	$f=J / \psi \pi^{+} \pi^{0}$	J	N.b. тне ρ is MUCH BROADE THAN D* (FACTOR ~2000)
$\overline{\mathrm{X}}(3876)=X_{u} \rightarrow f$	0.59	0.26	$4.5 \cdot 10^{-7}$	-		
$\underline{\mathrm{X}(3872)=X_{d} \rightarrow f}$	0.56	0.0102	0	-		
$X^{+}(3877) \rightarrow f$	-	-	-	1.2		
$X^{+}(3876) \rightarrow f$	-	-	-	1.2		
$\begin{aligned} & \Gamma\left(X_{u} \rightarrow D^{0} \bar{D}^{0} \pi^{0}\right) \gg \Gamma\left(X_{u} \rightarrow J / \psi \pi^{+} \pi^{-}\right) \simeq \\ & \simeq \Gamma\left(X_{d} \rightarrow J / \psi \pi^{+} \pi^{-}\right) \gg \Gamma\left(X_{d} \rightarrow D^{0} \bar{D}^{0} \pi^{0}\right) \end{aligned}$						

COUPLINGS

USING THE RESULT OBTAINED BEFORE

$$
\mathcal{B}\left(X_{u} \rightarrow \psi \pi \pi\right) \lesssim \frac{1}{30} \times \mathcal{B}\left(X_{u} \rightarrow D \bar{D} \pi\right)
$$

AND THE RATIO OF REDUCED RATES 0.26/O.59 FROM TABLE, WE GET INDEED

$$
\begin{gathered}
\qquad \frac{\lambda_{\psi V}^{u}}{\lambda_{D^{*} D}^{u}} \sim 0.13 \\
\text { and } \quad \Gamma\left(X_{u} \rightarrow J / \psi \pi^{+} \pi^{-}\right) \simeq \Gamma\left(X_{d} \rightarrow J / \psi \pi^{+} \pi^{-}\right) \leq 0.1 \text { MeJ } \begin{array}{l}
\text { but we expect } \mathbf{X}_{+} \\
\text {just in between of } \\
\text { Xu and Xd. } 0-\gg \\
\text { but a repulsion } \\
\text { transforms into } \\
\text { attraction }
\end{array} \\
\text { PICTURE }
\end{gathered}
$$

- $\mathrm{X}_{\mathrm{u}}: \Gamma($ multi-g $) \approx 1 \mathrm{MeV}, \quad \Gamma\left(\mathrm{D}^{0} \mathrm{D}^{0} \pi^{0}\right) \approx 1-3 \mathrm{MeV}(B=0.5$ to 1$) ; B(\psi \pi \pi)=$ negl.
- $\mathrm{X}_{\mathrm{d}}: \Gamma$ (multi-g) $\approx 1 \mathrm{MeV}, \quad \Gamma(\psi \pi \pi) \approx 0.1 \mathrm{MeV}(B=0.05) ; \Gamma(\mathrm{DD} \pi)=0$.
- $\mathrm{X}^{+}: \Gamma(\mathrm{multi}-\mathrm{g}) \approx 0.1-1 \mathrm{MeV}, \Gamma(\psi \pi \tau) \approx 0.2 \mathrm{MeV} ; \Gamma(\mathrm{DD} \pi)=$ strongly mass dependent, may be dominant for $\mathrm{M}>3876$

THE YET UNOBSERVED X ${ }^{+-}$

EXPERIMENTAL BOUNDS

$$
\begin{aligned}
& \mathcal{B}\left(B^{+} \rightarrow K^{0} X^{+}\right) \mathcal{B}\left(X^{+} \rightarrow J / \psi \pi^{+} \pi^{0}\right) \leq 2.2 \times 10^{-5} \\
& \mathcal{B}\left(B^{0} \rightarrow K^{+} X^{-}\right) \mathcal{B}\left(X^{-} \rightarrow J / \psi \pi^{-} \pi^{0}\right) \leq 0.54 \times 10^{-5}
\end{aligned}
$$

USING PREVIOUS RESULTS WE GET

$$
\begin{aligned}
& \frac{\mathcal{B}\left(X^{-} \rightarrow \psi \pi^{-} \pi^{0}\right)}{\mathcal{B}\left(X_{d} \rightarrow \psi \pi \pi\right)} \equiv \frac{\mathcal{B}\left(B^{0} \rightarrow K^{+} X^{-}\right) \mathcal{B}\left(X^{-} \rightarrow \psi \pi^{-} \pi^{0}\right)}{\mathcal{B}\left(B^{0} \rightarrow K^{+} X^{-}\right) \mathcal{B}\left(X_{d} \rightarrow \psi \pi \pi\right)} \leq \\
& \leq \frac{0.54 \times 10^{-5}}{\mathcal{B}\left(B^{0} \rightarrow K^{+} X^{-}\right) \mathcal{B}\left(X_{d} \rightarrow \psi \pi \pi\right)} \frac{\mathcal{B}\left(B^{0} \rightarrow K^{0} X_{d}\right)}{\mathcal{B}\left(B^{0} \rightarrow K^{0} X_{d}\right)}=\frac{0.54}{0.51} \frac{\mathcal{B}\left(B^{0} \rightarrow K^{0} X_{d}\right)}{\mathcal{B}\left(B^{0} \rightarrow K^{+} X^{-}\right)} \simeq \\
& \simeq\left|\frac{V+S}{S}\right|^{2} \times \frac{0.54}{0.51}
\end{aligned}
$$

I.E., THE LIMIT

$$
\mathcal{B}\left(X^{+} \rightarrow J / \psi \pi^{+} \pi^{0}\right) \leq\left|\frac{V+S}{V}\right|^{2} \times \frac{0.54}{0.51} \times \mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right) \simeq 0.25
$$

SUMMARY

- ARE X(3872) AND X(3876) TWO DIFFERENT PARTICLES? WE GUESS SO AND IDENTIFY THEM AS THE Xd AND Xu OF THE 4Q MODEL
- INDEED THEY CAN EFFECTIVELY BE ACCOMODATED AS THE NEUTRAL COMPONENTS OF A COMPLEX OF FOUR STATES CONTAINING ALSO TWO CHARGED PARTICLES
- MAYBE THE CHARGED PARTNERS HAVE TO BE SEARCHED IN OPEN CHARM FINAL STATES: $X^{+} \rightarrow D^{+} D^{-} \pi^{0}$
- SEE MAIANI, POLOSA, RIQUER ARXIV:0707.3354

MASSES

BUT...

```
BELLE AND, VERY RECENTLY, BABAR REPORT A PEAK IN DD AT A MASS 3875 ~2.5 MEV AWAY FROM X(3872)!
TWO STATES?
```

MOLECULES? DD π IS OBSERVED TO OCCUR AT A LARGER RATE THAN J ρ

By Swanson hep-ph/0311229

$B_{E}(\mathrm{MeV})$	$D^{0} \bar{D}^{0} \pi^{0}$	$\pi^{+} \pi^{-} J / \psi$	$\pi^{+} \pi^{-} \pi^{0} J / \psi$
0.7	67	1290	720
1.0	66	1215	820
2.0	57	975	1040

WHICH AGREES WITH THE SIMPLE EXPECTATION

$$
\Gamma(D D \pi) \sim \Gamma\left(D^{* 0}\right)=70 \mathrm{KeV}
$$

ee $\rightarrow J / \psi \pi \pi$ cross-section

