Charm – Production in e⁺e⁻ Annihilation around 4 GeV

Brian Lang University of Minnesota on behalf of the CLEO Collaboration

Charm 2007 Cornell University, August 5th-8th 2007

Why investigate this region:

- The cross sections to DD, D*D, and D*D* are not well known at the energies of interest.
- The only previous measurements of D_s yields in this region:
 - BES measured the production cross section times branching ratio to $\phi \pi$ at 4030 MeV as 11.2 pb, due to D_sD_s.
 - □ Mark III measured the production cross section times branching ratio to $\phi \pi$ at 4140 MeV as 26 pb, production is largely $D_s \overline{D}_s^*$.
- Optimal E_{cm} for D_s decay physics: balance of total production against event complexity.
- Test of theoretical predictions from Eichten et al in 1980 Phys. Rev. D21 203
 - Coupling of open charm channels to cc̄ states

Data Sample from CLEO Scan

- Using the scan data which was collected between Aug. and Oct. of 2005.
- At each energy the data sample was sufficient to determine the cross sections for all expected charm states.

Multi-Body Production

PRELIMINARY

- There is no reason why, for example, there can not exist multi-body events like e⁺e⁻→DD^{*}π or any other allowed combination of Dmesons and pions.
- First, are there events outside our two-body D_(s)^(*)D_(s)^(*) exclusive event categories? Yes!

 Assuming only two body kinematics, NO D⁰ mesons with a momenta below ~350 MeV.

Data shows a clear D⁰ peak in the mass distribution for $K^-\pi^+$ candidates with momenta below 250 MeV.

Momentum Spectrum of D^0 at 4170 MeV

Brian Lang University of Minnesota and the CLEO Collaboration

Brian Lang University of Minnesota and the CLEO Collaboration

$$(P_{Event}^{\mu} - P_{D^{*}}^{\mu} - P_{\pi}^{\mu})^{2} = MM^{2}$$

Momentum Fits using MC

- How do we get a handle on the multi-body contribution?
- It is possible to estimate the contribution of multibody events by fitting the observed *D* momentum spectrum with MC predictions for the two-body processes and some representation of multi-body.

Momentum Fits using MC

PRELIMINARY

Only assuming $D^*D\pi$ multi-body is present.

Check of the Total Charm Cross Section

- One can perform an inclusive measurement as a cross check on the total charm cross section.
 - The invariant mass used to extract the yields.
 - □ Only using $D^0 \rightarrow K^-\pi^+$, $D^+ \rightarrow K^-\pi^+\pi^+$ and the high yield mode of $D_s^+ \rightarrow K^+K^-\pi^+$.
- Also, one can count the number of hadronic events above the *uds* continuum background as an additional check to the total charm cross section.

Comparison: Exclusive from MomentumFits vs. InclusivePRELIMINARY

Radiative Corrections

PRELIMINARY

In order to compare the observed cross sections to theory and previous experiments the cross sections need to be corrected for the effects of initial-state radiation.

Using theoretical treatment of Kuraev and Fadin (Sov. J. Nucl. Phys. 41 466) and Crystal Ball R measurement

Inclusive Cross Section

These inclusive measurements can be compared to other experiments by the cross section times branching ratio for $D^0 \rightarrow K^-\pi^+$ and $D^+ \rightarrow K^-\pi^+\pi^+$.

PRELIMINARY

Comparison with Updated Eichten et al.

E. Eichten, International Workshop on Heavy Quarkonium (BNL 2006) and personal communication

- Most noticeable difference in D*D* channel.
- Still reasonable qualitative agreement.

PRELIMINARY

Updating S. Dubynskiy and M.B. Voloshin's results hep-ph/0608179

Conclusions

- Exclusive charm production above threshold have been measure.
 - $\sigma(D_sD_s)$ peaks at 4010 MeV
 - σ(D_s*D_s) peaks at 4170 MeV and is used by CLEO-c for D_s decay studies
- Interesting absence of DD at 4015 MeV (possibly a new resonance?)
- These studies will lead to a better understanding of QCD

Backup Slides

08/05/07- Charm 2007

Momentum Fits to Data

E_{cm} = 4170 MeV ~ 180 pb⁻¹

Comparison with the BaBar Collaboration

Theoretical Predictions

Determined partial widths at two E_{CM} energies.

Center-of-Mass	DD	D^*D	D^*	D^*	D_s	$^{+}D_{s}^{-}$	D	$^{*+}_{s}D^{-}_{s}$	SUM	Exp.
Energy										
$4040 { m MeV}$	0.1	33	33		7.8		-		74	52 ± 10
$4159 { m MeV}$	16	0.4	35		8.0		14		74	78 ± 20
nep-ph/0412057	C E	Center-of-Mass Energy (MeV)			DD D*i)	D^*D^*	$D_s^+ D_s^-$	$D_{s}^{*+}D_{s}^{-}$
	4160	4160 (This Analysis)			± 0.5	28.2 ± 1.8		54.1 ± 3.6	-	9.7 ± 0.6
	4	4159 (Barnes)			1.6 0.5			47.3	10.8	18.9

Partial widths in units of MeV

08/05/07- Charm 2007