Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Leptonic & Semileptonic D- and D_s Decays <u>at B-Factories</u>

thanks to Arantza Oyanguren, Justine Serrano & Paul Jackson (all BaBar) for their help and material!

Laurenz Widhalm HEPHY Vienna (Belle Collaboration)

NNNN

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Introduction

leptonic part easily calculable in theory

semileptonic decay

leptonic decay

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Introduction

leptonic part easily calculable in theory

hadronic part described by decay constant (leptonic decays) or form factors (semileptonic decays)

 calculation of these constants/functions requires nonperturbative QCD (not *that* easy...)

 measurement of these quantities in the charm sector important to check / tune calculations in the B-sector

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Semileptonic Decays

Phys.Rev.Lett.97:061804,2006 hep-ex/0604049

BABAR-PUB-07/015 arXiv:0704.0020 accepted by PRD!

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

$D^0 \rightarrow K/\pi \ e/\mu \ v$ Introduction

- in principle, two form factors $f^+(q^2)$ and $f^-(q^2)$
- kinematically only $f^+(q^2)$ relevant, $f^-(q^2)$ suppressed by m_l^2

$$\frac{d\Gamma}{dq^2} = \frac{G_f^2 |V_{q_1 q_2}|^2 p_{P'}^3}{24\pi^3} |f_+(q^2)|^2$$

• various models that are frequently discussed in literature:

$$\begin{array}{|c|c|c|c|c|c|} \hline simple pole & f_{+}(q^{2}) = & \underline{\Omega} & \Omega = f_{+}(0) & m....pole mass = m D_{s}^{*} \approx 2.11 \ \text{GeV} (Klv) & m....pole mass = m D_{s}^{*} \approx 2.01 \ \text{GeV} (\pi lv) & m...pole mass = m D_{s}^{*} \approx 2.01 \ \text{GeV} (\pi lv) & m...pole mass = m D_{s}^{*} \approx 2.01 \ \text{GeV} (\pi lv) & m...pole mass = m D_{s}^{*} \approx 2.01 \ \text{GeV} (\pi lv) & m...pole mass = m D_{s}^{*} \approx 2.01 \ \text{GeV} (\pi lv) & m...pole mass = m D_{s}^{*} \approx 2.01 \ \text{GeV} (\pi lv) & m...pole mass = m D_{s}^{*} \approx 2.01 \ \text{GeV} (\pi lv) & m...pole mass = m D_{s}^{*} \approx 2.01 \ \text{GeV} (\pi lv) & m...pole mass = m D_{s}^{*} \approx 2.01 \ \text{GeV} (\pi lv) & m...pole mass = m D_{s}^{*} \approx 2.01 \ \text{GeV} (\pi lv) & m...pole mass = m D_{s}^{*} \approx 2.01 \ \text{GeV} (\pi lv) & m...pole mass = m D_{s}^{*} \approx 2.01 \ \text{GeV} (\pi lv) & m...pole mass = 0.50 \ (Klv) & m...pole ma$$

 K/π

 \mathbf{D}_{0}

BRs (%)	this analysis	PDG (incl. this result)
K⁻e⁺v	$3.45 \pm 0.10_{stat} \pm 0.19_{syst}$	3.50 ± 0.09
K⁻µ⁺v	$3.45 \pm 0.10_{stat} \pm 0.21_{syst}$	3.27 ± 0.13
π ⁻e⁺ν	$0.279 \pm 0.027_{stat} \pm 0.016_{syst}$	0.280 ± 0.017
<i>π</i> -μ+ν	0.231 ± 0.026 _{stat} ± 0.019 _{syst}	0.236 ± 0.024

absolute branching ratios (ratio to total number of recoil D^o tags)
efficiency correction, further corrected for bias due to differences data/MC

(1.9%±3.9%)

Leptonic & semileptonic D / Ds decays at B-factories 🚰 BABAR 🔀

$$D^0 \rightarrow K e v$$

Untagged analysis

- Reconstruct channel $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \ell^+ \nu$ in e⁺e⁻→cc̄ continuum
- Determine $q^2 = (p_D p_K)^2 = (p_e + p_v)^2$:
 - define 2 hemispheres (soft π , K and e in same) • D direction = opposite to all seen part. but K & e • E_{miss} in e-hemisphere • fit p_{D} using D direction, Emiss, p_{κ} and p_{e})

BaBar in a nutshell located at SLAC / USA • PEP-II Collider • B-Factory at $\Upsilon(4s)$ resonance peak luminosity 12.069 1/nb/s integrated luminosity 463 1/fb (as of Jun 2007; only part of it used in presented analyses) main physics goal: observation of CPV in B meson Decays

 $\delta m = m(K^- \ell^+ v \pi^+) - m(K^- \ell^+ v)$ after the fit with 1 constraint on m_D

Laurenz Widhalm, HEPHY Vienna (Belle Collab.) Leptonic & semileptonic D / Ds decays at B-factories 🚰 BABAR 🔀 BABAR-PUB-07/015 arXiv:0704.0020 BABAR branching ratios $D^0 \rightarrow K/\pi e \nu$ • ratio to BR(D⁰ \rightarrow K π), using world average of (3.80 ± 0.07)% efficiency correction

BR (%)this analysisPDG
(incl. Belle result)K-e+v $3.522 \pm 0.027_{stat} \pm 0.045_{syst} \pm 0.065_{BR(K\pi)}$ 3.50 ± 0.09

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Event reconstruction

same method as for $D \rightarrow Kev$ but without D^*

- Define 2 hemispheres
- take $K^{\scriptscriptstyle +},\,K^{\scriptscriptstyle -}$, ℓ in the same hemisphere
- Compute D_s direction (- p_{all particles ≠ K+,K-,I})
- Compute the missing energy in the ℓ hemisphere
- Fit $p_{Ds} = p_{K+} + p_{K-} + p_{\ell} + p_{\nu} \rightarrow one$ constrained fit m_{Ds}
- Compute kinematic variables : q^2 , θ_v , θ_l , χ

 Reduce the background
 → Fisher discriminants (bb and cc events)

 \bigcirc control sample \rightarrow **D**_s \rightarrow $\phi\pi$

Background composition: B°B° evts = 23% B*B* evts = 22% uds evts = 14% cc = 41%

Data

BB

CC

uds

fit result

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Fitting Procedure

- 5 equal bins for each reconstructed variable
- perform a log-likelihood minimization
- number of bkg events estimated from normalized generic MC (average over $\cos\theta_v$ and χ assuming a flat distribution)
- number of signal events expected deduced by applying a weight W to MC signal events generated according to phase space
- fitting procedure has been checked on toy simulations

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Results

 $\sum_{D_s \to \phi \in V} B_A B_A$

Form factor ratios at q²=0 (fixing $m_A = 2.5 \text{GeV/c}^2$ and $m_V = 2.1 \text{GeV/c}^2$) :

Same accuracy as $D \rightarrow K^* ev$ (FPCP 2006, J.Wiss)

Fixing only the vector pole mass :

$$r_2 = 0.711 \pm 0.111 \pm 0.096$$

 $r_v = 1.633 \pm 0.081 \pm 0.068$

 $m_A = 2.53^{+0.54}_{-0.35} \pm 0.054 \text{ GeV/c}^2$

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Leptonic Decays

Phys.Rev.Lett.98:141801,2007

preliminary, new 2007 summer result

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Precise knowledge of $f_{_{Bd}}$ and $f_{_{Bs}}$ needed to improve constraints from $\Delta M_{_d}$ and $\Delta M_{_d}/\Delta M_{_s}$

In LQCD similar techniques are used to calculate b and c decay constant \Rightarrow experimental measurements of f_{Ds} and f_{D} can be used as a test of lattice QCD

Partial width of $M^+ \rightarrow l^+ v$:

$$\Gamma = \frac{G_F^2}{8\pi} |V_{Qq}|^2 (f_M^2 M_M m_l^2 (1 - \frac{m_l^2}{M_M^2})^2 \qquad Phase space$$
KM Mixing
Helicity Suppression
D t out us most accessible experimentally:

 $\Gamma(\mathsf{D}_{\mathsf{s}}^{+} \to \tau^{+} \mathsf{v}_{\tau}) : \Gamma(\mathsf{D}_{\mathsf{s}}^{+} \to \mu^{+} \mathsf{v}_{\mu}) : \Gamma(\mathsf{D}_{\mathsf{s}}^{+} \to e^{+} \mathsf{v}_{e}) = 10 : 1 : 10^{-5}$

 $(BR(\tau \rightarrow hv_{\tau}) \approx 11\%)$

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

tagged, partial reconstruction analysis

- Reconstruct charm mesons D⁰, D⁺, D_s⁺, and D^{*+} using hadronic decay modes – the 'tag'
- High tag momentum above the kinematic limit from B decays
- Search for $D_s^{*+} \rightarrow \gamma D_s^{+} \rightarrow \gamma \mu^+ \nu$ in recoil
- Advantages:
 - tag momentum reduces uds, BB, $\tau\tau$ backgrounds
 - tag direction improves fit to missing neutrino and the ΔM resolution
 - knowledge of tag's charm reduces pion→muon misidentification by 50%
- Disadvantage
 - Loss in efficiency due to tagging

5.10⁵ events with a muon in the recoil after bkg subtraction

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Signal Yield

- Yield extraction :
 - remove fake tag bkg by bin-bybin subtraction µ tag sideband from µ tag signal region
 - same for electrons
 - then subtract e from μ to remove semileptonic and τ bkg
 - Binned χ^2 fit
- Normalize to $D_s^+ \rightarrow \phi \pi$

Result :

 $\frac{\Gamma\left(D_{s}^{+} \rightarrow \mu^{+} v_{\mu}\right)}{\Gamma\left(D_{s}^{+} \rightarrow \phi \pi\right)} = 0.143 \pm 0.018 \pm 0.006$

Independent measurement in BaBar :

 $B(D_s^+ \to \phi \pi) = (4.71 \pm 0.46)\%$

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

$$D_s \rightarrow \mu \nu$$

new summer 2007 result preliminary!

tagged, full reconstruction analysis

analysis technique very similar to $D \rightarrow K/\pi Iv$ analysis

Belle in a nutshell

 located at KEK / Japan

- KEKB Collider
- B-Factory at $\Upsilon(4s)$ resonance
- peak luminosity 17.118 1/nb/s

• integrated luminosity 715 1/fb (as of Jun 2007; only part of it used in presented analyses)

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

n_{X} distribution definition of n_{x} :

n_x = number of primary particles, i.e. the D, the D_s*, the primary K and an arbitrary number of pions and gammas

note: the minimal value of n_x is 3 (D,D_s*,K)

Problem: n_x distribution incorrect in MC and convoluted in reconstruction!

Solution: fit in bins of true n_x

 $D_s \rightarrow \mu \nu$

Leptonic & semileptonic D / Ds decays at B-factories 🚰 BABAR 🧭

fit of D_s tags

 $\frac{1}{D_{s} \rightarrow \mu \nu}$

N(D_s tags) = 32100 ± 870_{stat} ±1210_{syst}

Leptonic & semileptonic D / Ds decays at B-factories 💇 BABAR 🔽

μv signal & background in MC

get shape of background from data by exchanging the muon by an electron ("ev shape")
use this as model for the background in the fit
correct for e/µ efficiency differences

 $D_s \rightarrow \mu \nu$

Leptonic & semileptonic D / Ds decays at B-factories 🚰 BABAR 🥝

μν signal yields

BELLE

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

branching ratio & decay constant

Laurenz Widhalm, HEPHY Vienna (Belle Collab.)						
Leptonic & se at B-factorie	mileptonic D / Ds decays S S BABAR	Charm 200				
Overview	of Results					
$ diff. < 1\sigma $ $ 1\sigma < diff. < 2\sigma $	BABAR	R				
$D^0 \rightarrow K/\pi e/\mu v$		BELLE				
BRs Κ ⁻ e ⁺ ν Κ ⁻ μ ⁺ ν π ⁻ e ⁺ ν π ⁻ u ⁺ ν	3.522 ± 0.027 _{stat} ± 0.045 _{syst} ± 0.065 _{Kπ}	$3.45 \pm 0.10_{stat} \pm 0.19_{syst}$ $3.45 \pm 0.10_{stat} \pm 0.21_{syst}$ $0.279 \pm 0.027_{stat} \pm 0.016_{syst}$ $0.224 \pm 0.026 \pm 0.040$				
$FF r_{1} r_{2}$	$-2.5 \pm 0.2_{stat} \pm 0.2_{syst}$ $0.6 \pm 6.0_{stat} \pm 5.0_{syst}$	$0.231 \pm 0.020_{\text{stat}} \pm 0.019_{\text{syst}}$				
$\begin{array}{c} 2.112 ({\rm D_s}^*) & {\rm m_{pole}}({\rm K}) \\ \hline 2.010 ({\rm D}^*) & {\rm m_{pole}}(\pi) \end{array}$	1.884 ± 0.012 _{stat} ± 0.015 _{syst} GeV	1.82 ± 0.04 _{stat} ± 0.03 _{syst} GeV 1.97 ± 0.08 _{stat} ± 0.04 _{syst} GeV				
$\begin{array}{ c c c c c c c c } \hline 0.50 \pm 0.04 & \alpha(K) \\ \hline 0.44 \pm 0.04 & \alpha(\pi) \\ \hline \end{array}$	$0.377 \pm 0.023_{stat} \pm 0.029_{syst}$	$0.52 \pm 0.08_{stat} \pm 0.06_{syst}$ $0.10 \pm 0.21_{stat} \pm 0.10_{syst}$				
$\begin{array}{c c} 0.73(3)(7) & f_{+}(0,K) \\ \hline 0.64(3)(6) & f_{-}(0,\pi) \end{array}$	$0.727 \pm 0.007_{\text{stat}} \pm 0.005_{\text{syst}} \pm 0.007_{\text{Kpi}}$	$0.695 \pm 0.007_{\text{stat}} \pm 0.022_{\text{syst}}$ $0.624 \pm 0.020_{\text{stat}} \pm 0.030_{\text{syst}}$				

+

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Overview of Results

0.705 ± 0.056 ± 0.029
$1.636 \pm 0.067 \pm 0.038$
$0.711 \pm 0.111 \pm 0.096$
$1.633 \pm 0.081 \pm 0.068$
$2.53_{-0.35}^{+0.54} \pm 0.054 \text{ GeV/c}^2$

 $6.74 \pm 0.83 \pm 0.26 \pm 0.66$ 283 ± 17 ± 7 ± 14 MeV

 $6.44 \pm 0.76 \pm 0.52$ 275 ± 16 ± 12 MeV

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Summary

 both BaBar and Belle could help to improve various measurements in leptonic & semileptonic decays:

 decay constants measured with accuracy similar to LQCD precision (statistically limited)

• FF normalization already more accurate than LQCD (again statistically limited)

 hints of differences between measurement and theory in FF q² dependency; needs better measurement at high q² (where statistics are low)

• methods complement each other (full reconstruction / lower statistics / better resolution vs partial reconstruction / higher statistics / worse resolution)

• results are in good to fair agreement within B-factories

important (and competitive) complement of results achieved at D_(s)D_(s)
 threshold

thanks to Arantza Oyanguren, Justine Serrano & Paul Jackson (all BaBar) for their help and material!

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

(202 ID · OI BELLE data)	Nev	Κμν	ルモッ	λμν
signal events	1318	1249	126	106
	± 37 _{stat} ± 7 _{syst}	± 37 _{stat} ± 25 _{syst}	± 12 _{stat} ± 3 _{syst}	\pm 12 _{stat} \pm 6 _{syst}
fake D ^o bkg	12.6 ± 2.2	12.2 ± 4.8	12.3 ± 2.2	12.5 ± 4.5
semileptonic bkg*	6.7 ± 2.6	10.0 ± 2.5	11.7 ± 1.2	12.6 ± 1.9
hadronic bkg**	11.9 ± 5.6	62.1 ± 23.9	1.8 ± 0.7	9.7 ± 3.7

* error dominated by MC stats

** error dominated by fit errors & bias special bkg sample

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Form Factors – q² distribution

σ(q²) = 0.0145 GeV²/c²
(width of red line)
→ no unfolding
necessary!

background shapes from data

 q^2 / GeV²

Laurenz Widhalm, HEPHY Vienna (Belle Collab.) Leptonic & semileptonic D / Ds decays at B-factories BABAR BABAR Fisher variables : • cc background: Spectator system variables (mass, angular distribution, momentum and angular distribution of the leading particle + kinematic

R

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Control Samples

- Use $D_s \rightarrow \phi \pi$ (reconstructed as similar as possible)
- D_s direction and missing energy determination:

Define a parametrization of the differences to take into account possible biases.

• Fisher variables : Large disagreement data/MC observed in the fragmentation distribution

Check other Fisher variables after correction : small discrepancy remains, ex: spect. syst. momentum

Taken into account in the systematic uncertainties by defining an additional weight on this variable.

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Control Samples

MC

Data

D_s direction determined using all the other tracks in the event is compared to its real value :

Entries

3000

2500F

2000

1500F

1000

500F

KABAR

preliminary

-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

 ϕ_{Ds} (true-rec)

Tag momentum above 2.35 GeV/c to remove D from B decays

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Background

- Signal is a peak in $\Delta M = M_{Ds^*} M_{Ds}$
- Tagging removes bb, uds, and ττ background, and cc background
- Identify kinematic quantities which distinguish signal
- Fake charm tag from uds, bb, ττ, cc → 42 %
 ⇒ Subtracted using the tag sidebands
- Correct tag but μ from charm semi leptonic decay or τ ($\tau \rightarrow \mu v_{\mu} v_{\tau}$) $\rightarrow 26 \%$ \Rightarrow Use electron : same decays appear with an e while there is no $D_s^+ \rightarrow e^+ v$
 - \Rightarrow Take into account differences between μ and e (phase space, Bremsstrahlung, e from conversion)
- Leptonic background $cc \rightarrow D_{(s)}^{*} \rightarrow D_{(s)}\pi^{0}, D_{(s)} \rightarrow \mu v_{\mu}$ $cc \rightarrow D_{(s)} \rightarrow \mu v_{\mu}$
- Combinatoric

Phys.Rev.Lett.98:141801.2007

Estimated from simulated events Tag sidebands

 $D_s \rightarrow \mu \nu$

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

Leptonic & semileptonic D / Ds decays at B-factories **BABAR**

