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In this talk, I review the effective theory approach to unstable particle production and
present results of a calculation of the process e−e+ → µ−ν̄µud̄X near the W -pair
production threshold up to next-to-leading order in ΓW /MW ∼ α ∼ v2. The remaining
theoretical uncertainty and the impact on the measurement of the W mass is discussed.

1 Introduction

The masses of particles like the top quark, the W boson or yet undiscovered particles like
supersymmetric partners can be measured precisely using threshold scans at an e−e+ col-
lider. In particular the error of the W mass could be reduced to 6 MeV by measuring the
four fermion production cross section near the W -pair threshold [2], provided theoretical
uncertainties are reduced well below 1%. In such precise calculations one has to treat finite
width effects systematically and without violating gauge invariance. The next-to-leading
order (NLO) calculations of W -pair production [3] available at LEP2 were done in the pole
scheme [4] and were supposed to break down near threshold. The recent computation of the
complete NLO corrections to e−e+ → 4f processes in the complex mass scheme [5] is valid
near threshold and in the continuum, but is technically demanding and required to compute
one loop six-point functions.

In this talk [1], I report on the NLO corrections to the total cross section of the process

e−e+ → µ−ν̄µud̄X (1)

near the W -pair threshold [6] obtained using effective field theory (EFT) methods [7, 8, 9].
This calculation is simpler than the one of [5] and results in an almost analytical expression
of the result that allows for a detailed investigation of theoretical uncertainties. However, the
method is not easily extended to differential cross sections. Section 2 contains the leading
order (LO) EFT description while the NLO approximation of the tree and the radiative
corrections are described in Sections 3 and 4, respectively. Results are presented in Section 5
together with an estimate of the remaining theoretical uncertainties and a comparison to [5].

2 Unstable particle effective theory

To provide a systematic treatment of finite width effects, in [7, 8] EFT methods were used
to expand the cross section simultaneously in the coupling constant α, the ratio Γ/M and
the virtuality of the resonant particle (k2 −M2)/M2, denoted collectively by δ. The modes
at the small scale δ (the resonance, soft or Coulomb photons, . . . ) and the external particles
are described by an effective Lagrangian Leff that contains elements of heavy quark effective
theory or non-relativistic QED and soft-collinear effective theory (SCET) (for reviews of
the various EFTs see e.g [11]). “Hard” fluctuations with virtualities ∼ M 2 are not part
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of the EFT and are integrated out. Their effect is included in short-distance coefficients
in Leff that can be computed in fixed-order perturbation theory without resummations of
self-energies. Finite width effects are relevant for the modes at the small scale and are
incorporated through complex short-distance coefficients in Leff [8, 10].

It might be useful to compare the EFT approach to the pole scheme for the example of
the production of a single resonance Φ in the inclusive process f1f̄2 → X . The pole scheme
provides a decomposition of the amplitude into resonant and non-resonant pieces [4]:

A(s)|s∼M2 =
R(s̄)

s− s̄ +N (s), (2)

where both s̄, the complex pole of the propagator defined by s̄−M 2 −Π(s̄) = 0, and R(s̄),
the residue of A(s) at s̄, are gauge independent. In the EFT, it is convenient to obtain the
cross section from the imaginary part of the forward-scattering amplitude that reads [8]

iA(s)|s∼M2 =

∫
d4x 〈f1f̄2|T

[
iO†

Φf1 f̄2
(0)iOf1 f̄1Φ(x)

]
|f1f̄2〉+ 〈f1f̄2|iO4f (0)|f1f̄2〉 . (3)

Here Of1 f̄2Φ describes the production of Φ while O4f describes non-resonant contributions.
The matching coefficients of these operators are gauge independent since they are computed
from on-shell scattering amplitudes in the underlying theory, where for unstable particles
“on-shell” implies k2 = s̄. The structure of (3) is similar to (2), but the EFT provides
a field theoretic definition of the several terms. Higher order corrections to the matching
coefficients correspond to the factorizable corrections in the pole scheme. Loop corrections
to the matrix elements in the EFT correspond to the non-factorizable corrections [7].

Turning to W -pair production near threshold, the appropriate effective Lagrangian to
describe the two non-relativistic W bosons with k2 −M2

W ∼M2
W v

2 ∼M2
W δ is given by [9]

LNRQED =
∑

a=∓

[
Ω†ia

(
iD0 +

~D2

2MW
− ∆

2

)
Ωia + Ω†ia

( ~D2 −MW∆)2

8M3
W

Ωia

]
(4)

with the matching coefficient [8] ∆ ≡ (s̄−M 2
W )/MW . If MW is the pole mass, this becomes

∆ = −iΓW . The fields Ωi± ≡
√

2MWW
i
± describe the three physical polarizations of the

W s; the unphysical modes are not part of the EFT [9]. The covariant derivative DµΩi± ≡
(∂µ∓ieAµ)Ωi± includes interactions with those photon fluctuations that keep the virtualities
of the Ωs at the order δ. These are soft photons with (q0, ~q) ∼ (δ, δ) and potential (Coulomb)
photons with (q0, ~q) ∼ (δ,

√
δ). Collinear photons are also part of the EFT but do not

contribute at NLO. The Lagrangian (4) reproduces the expansion of the resummed transverse
W propagator in δ, as can be seen by writing the W four-momenta as kµ = MW vµ + rµ

with vµ ≡ (1,~0) and a potential residual momentum (r0, |~r|) ∼MW (v2, v) ∼ (δ,
√
δ):

i

k2 −M2
W −ΠW

T (k2)

(
−gµν +

kµkν
k2

)
⇒ i(−gµν + vµvν)

2MW (r0 − ~r2

2MW
+ ∆

2 )
. (5)

Higher orders in the expansion of the propagator are reproduced by the higher order kinetic
terms in (4) and residue factors included in the production operators [6].

The production of a pair of non-relativistic W bosons is described by the operator [9]

O(0)
p =

πα

s2
wM

2
W

(
ēc2,L

(
γinj + γjni

)
ec1,L

) (
Ω†i−Ω†j+

)
(6)
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that is determined from the on-shell tree-level scattering amplitude e−e+ →W+W−:

e
νe

W

e W
+ e

e

γ/Z W

W
⇒

e
e

Ω

Ω

O
(0)
p

. (7)

At threshold, only the t-channel diagram and the e−Le
+
R helicity contribute at leading order

in δ. Similar to (3), the LO e−e+ forward-scattering amplitude in the EFT is given by the
expectation value of a time ordered product of the operators (6), evaluated using (4):

iA(0) =

∫
d4x 〈e−e+|T[iO(0)†

p (0)iO(0)
p (x)]|e−e+〉 =

Ω

Ω

O
(0)
p O

†(0)
p

. (8)

One estimates A(0) ∼ α2
√
δ, noting that each Ω propagator (5) contributes δ−1 and counting

the potential loop integral as dk0d3ki ∼ δ5/2. The total cross section for the process (1) is
obtained from appropriate cuts of A(0), where cutting an Ω± line has to be interpreted as
cutting the self-energies resummed in the EFT propagator. At LO, the cuts contributing to
the flavour-specific final state are correctly extracted by multiplying the imaginary part of
A(0) by the leading-order branching fractions. In terms of E =

√
s− 2MW one obtains [6]

σ(0)(e−e+ → µ−ν̄µud̄) =
πα2

27s4
ws

Im

[
−i
√
−E + iΓW

MW

]
. (9)

3 NLO EFT approximation to the born cross section

Some parts of the NLO EFT calculation of the process (1) are included in a Born calculation
in the full theory with a fixed width prescription. One contribution arises from four-electron

operators O(k)
4e analogous to those in (3). Their matching coefficients C

(k)
4e are obtained from

the forward-scattering amplitude in the full electroweak theory. The leading imaginary parts

of C
(k)
4e are of order α3 and arise from cut two-loop diagrams corresponding to all squared tree

diagrams of the processes e−e+ →W−ud̄ and e−e+ →W+µ−ν̄µ, calculated in dimensional
regularization without self-energy resummations, but expanded near threshold:

e
W

e W

e

e
u

d̄

+

e

e

γ/Z
u

W

e
W

e

d

d̄

+

e

e

γ/Z
u

W

e

e

d

d̄

W
+ · · · ⇒

e

e

e

e

ImO
(1/2)
4f

(10)

Since these corrections to the amplitude are of order α3, and counting α ∼ δ, they are
suppressed by δ1/2 compared to A(0) ∼ α2δ1/2 and are denoted as ”

√
NLO” corrections.

The second class of contributions arises from production-operator and propagator correc-
tions. Performing the tree-level matching (7) up to order ∼ v and v2 leads to higher order

production operators O(1/2)
p and O(1)

p . The operators O(1/2)
p like

(
ēLγ

jeL
) (

Ωi−(−i)DjΩi+
)

are given in [9]. At NLO one needs diagrams with two insertions of an O(1/2)
p operator, one
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insertion of an O(1)
p operator and insertions of kinetic corrections from (4):

iA(1)
born =

Ω

Ω

O
(1/2)
p O

†(1/2)
p +

Ω

Ω

O
(1)
p O

†(0)
p +

(~k2−M∆)2

O
(0)
p O

†(0)
p

Equivalently one can directly expand the spin averaged squared matrix elements [6].
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Figure 1: Convergence of EFT approximations to
the born cross section from Whizard

As seen in Figure 1, the EFT ap-
proximations converge to the full Born
result but it turns out that a partial in-
clusion of N3/2LO corrections is required
to get an agreement of ∼ 0.1% at 170
GeV and ∼ 10% at 155 GeV [6]. For
higher-order initial state radiation (ISR)
improvement by a convolution with radi-
ator functions, one needs σBorn at ener-
gies far below threshold, where the EFT
is not valid. For the numerical results in
Section 5 the ISR-improved Born cross
section from Whizard [12] was used, but
one could also match the EFT to the full
theory below, say,

√
s = 155 GeV.

4 Radiative corrections

The radiative corrections needed up to NLO are given by higher order calculations of short
distance coefficients and by loop calculations in the EFT. Counting the QCD coupling
constant as α2

s ∼ αew ∼ δ, the corrections to ΓW up to order αewαs (
√

NLO), α2
ew and

αewα
2
s (NLO) have to be included. The flavour-specific NLO decay corrections are correctly

taken into account by multiplying the imaginary part of the LO forward-scattering amplitude
with the one-loop corrected branching ratios. For the NLO renormalization of the production
operator (6) one has to calculate the one-loop corrections to the on-shell scattering e−e+ →
W+W− at leading order in the non-relativistic expansion:

e
e

Z

e
γ

W
W

W
+

e νe

e
γ

W

W
+

e νe

e W
νee

W

W
+ · · · ⇒

e

e

Ω

Ω

C
(1)
p O

(0)
p

Due to the threshold kinematics, many of the 180 one-loop diagrams do not contribute,
consistent with the vanishing of the tree-level s-channel diagrams at leading order in v. In

terms of a finite coefficient c
(1,fin)
p given in [6], the matching coefficient reads

C(1)
p =

α

2π

[(
− 1

ε2
− 3

2ε

)(
−4M2

W

µ2

)−ε
+ c(1,fin)

p

]
. (11)

The first and second Coulomb correction arise from the exchange of potential photons.
Their magnitude can be estimated counting the loop-integral measure in the potential region
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as d4q ∼ δ5/2, the Ω propagator and the potential photon propagator i/|~q|2 as δ−1. One
finds that single Coulomb exchange is a

√
NLO correction compared to the LO amplitude:

γ ∼ α3

∫
d4k d4q

1

|~q|2 δ
−4 ∼ α3 ∼ A(0)

√
δ (12)

At threshold the one-photon exchange is of the order of 5% of the LO amplitude while
two-photon exchange is only a few-permille correction [13] and no resummation is necessary.

Soft photon corrections correspond to two-loop diagrams in the EFT containing a photon
with momentum (q0, |~q |) ∼ (δ, δ). They give rise to O(α) corrections as can be seen from
a power-counting argument similar to the one for Coulomb-exchange but counting the soft-
photon propagator −i/q2 as δ−2 and the soft loop-integral as δ4. In agreement with gauge
invariance arguments and earlier calculations [14], the sum of all diagrams where a soft
photon couples to an Ω line vanishes. The only remaining diagrams give

+ =
4π2α2

s4
wM

2
W

α

π

∫
ddr

(2π)d
1

η−η+

[(
1

ε2
+

5

12
π2

)(
−2η−

µ

)−2ε
]

(13)

with η− = r0− |~r|2
2MW

+iΓ(0)

2 and η+ = E−r0− |~r|2
2MW

+iΓ(0)

2 . The ε−2 poles cancel between (13)
and diagrams with an insertion of the NLO production operator (11) while the remaining
ε−1 poles proportional to (2 log (η−/MW ) + 3/2) are discussed below.

5 Results and estimate of remaining uncertainties

The radiative corrections in Section 4 were calculated for me = 0 so the result is not infrared
safe. It should be convoluted with electron distribution functions in the MS scheme after
minimal subtraction of the IR poles. However, the available distribution functions assume
me as IR regulator. Our result can be converted to this scheme by adding contributions
from the hard-collinear region where kµ ∼MW , k

2 ∼ m2
e, and the soft-collinear region where

kµ ∼ ΓW , k
2 ∼ m2

e
ΓW
MW

. These cancel the ε-poles but introduce large logs of MW /me:

σ(1)(s) =
α3

27s4
ws

Im

{
(−1)

√
−E+iΓW

MW

(
4 ln

(
− 4(E + iΓW )

MW

)
ln

(
2MW

me

)

− 5 ln

(
2MW

me

)
+ Re

[
c(1,fin)
p

]
+
π2

4
+ 3

)}
+ ∆σ

(1)
Coulomb + ∆σ

(1)
decay . (14)

At this stage, one can compare to the results of [5] for the strict O(αew) corrections
without higher order ISR improvement, σ4f(161GeV) = 105.71(7) fb and σ4f(170GeV) =
377.1(2). From (14) one obtains σEFT(161GeV) = 104.97(6) fb and σEFT(170GeV) =
373.74(2) so the difference between the EFT and [5] is only about 0.7%− 1%.

The large logs in (14) can be resummed by convoluting the NLO cross section with the
structure functions used e.g. in [3], after appropriate subtractions to avoid double-counting.
The solid line in Figure 2 shows the resulting corrections relative to σBorn. Compared to the
large correction from ISR improvement of σBorn alone (blue/dashed), the size of the genuine
radiative correction is about +8%.
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Figure 2: Size of the relative NLO cor-
rections for different treatments of ISR

The largest remaining uncertainty is due to the
treatment of ISR that is accurate only at leading-
log level. It is formally equivalent to improve only
σBorn by higher order ISR [3, 5], but not the radia-
tive corrections. The results of this approach are
shown in the red (dash-dotted) line in Figure 2 and
differ by almost 2% at threshold from the treat-
ment discussed above. This translates to an un-
certainty of δMW ∼ 31 MeV [6]. The remaining
theory uncertainty comes from the uncalculated
N3/2LO corrections in the EFT. The O(α) correc-
tions to the the four-electron operators (10) lead
to an estimated uncertainty of δMW ∼ 8 MeV [6].
These corrections are included in [5]. The effect of diagrams with single-Coulomb exchange
together with a soft photon or a hard correction to the production vertex is estimated as
δMW ∼ 5 MeV. Therefore it should be possible to reach the theoretical accuracy required
for the MW measurement since the largest remaining uncertainties can be eliminated by an
improved treatment of ISR and with input of the full four fermion calculation.
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