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We report new results on the NNNLO correction to the S-wave quarkonium wave-

functions at the origin, which also provide an estimate of the resonance cross section

in tt̄ threshold production at the ILC.

1 Introduction

Top quark pair production near threshold will be an important process at the ILC to de-
termine the top quark mass mt, decay width Γt and the QCD coupling constant αs. High
precision is called for for these quantities, so the theoretical uncertainty for the cross section
should be under control below the few percent level. For this purpose, the NNNLO QCD
calculation of the cross section is mandatory.

Recently we computed the NNNLO correction [1, 2] to the quarkonium wave-functions at
the origin, which governs height of the threshold cross section. In this proceedings we present
an analysis of the combined result of the papers [1, 2]. For the details of the calculation we
refer to the original papers.

The production cross section of a heavy quark pairQQ̄ is related to the two-point function
of the vector current jµ in QCD:

(

qµqν − gµνq2
)

Π(q2) = i

∫

ddxeiqx〈Ω|T jµ(x)jν (0)|Ω〉, (1)

where jµ = Q̄γµQ, qµ ≡ (2m+E,~0) in the center of mass frame of the QQ̄, and d = 4− 2ε.
Near the QQ̄ threshold, the two-point function exhibits the bound-state contribution

Π(q2)
E→En=

Nc

2m2

Zn

En − (E + i 0)
+ non-pole, (2)

where En is energy of n-th resonance (n is principal quantum number of the quarkonium
state, i 0 specifies the physical sheet in the analytic continuation). The poles dominate the
two-point function, therefore Zn and En control the height and the pole position, respec-
tively, of the threshold cross section.

The heavy quark threshold dynamics is non-relativistic (NR), so we utilize an effective
field theory, non-relativistic QCD (NRQCD) for the quark (ψ) and anti-quark (χ). In
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NRQCD the vector current is mapped onto

ji = cvψ
†σiχ+

dv

6m2
ψ†σi

D
2χ+ · · · , (3)

where cv , dv are matching coefficients, having perturbative series expansion in αs. Thus
the two-point function reduces to the one in NRQCD, whose bound-state contribution is
expressed by the quarkonium wave-function at the origin, ψn(0),

i

∫

ddxeiEt〈Ω|T [ψ†σiχ](x)[χ†σiψ](0)|Ω〉
E→En= 2Nc(d− 1)

|ψn(0)|2

En − (E + i 0)
+ non-pole. (4)

The pre-factor 2Nc(d − 1) is due to spin⊗color⊗space degrees of freedom. The relation
between the residues of the QCD and NRQCD two-point functions is given by

Zn = cv

[

cv −
En

m

(

1 +
dv

3

)

+ · · ·

]

× |ψn(0)|2, (5)

where the D
2 term in eq.(3) was replaced by −mE using the equations of motion of the

NRQCD fields. The wave-function as well as the matching coefficients possess scale de-
pendence because of their UV and IR divergences characteristic to the effective theory
calculations which we treat according to the threshold expansion [3]. The physical quantity
measured in experiments is Zn, a scale-invariant combination of the matching coefficients
and the NR wave-function. In the next section we present semi-analytical formulae for all
the building blocks needed to get Z1, and discuss the importance of the NNNLO correc-
tion for stabilizing the perturbative result for the quarkonium wave-functions at the origin
against scale variation.

2 NNNLO corrections to the wave-function at the origin

The wave-function at the origin to NNNLO consists of the Coulomb contribution, the non-
Coulomb potential contribution, and the ultra-soft correction in NRQCD. The Coulomb
contribution is finite and calculated analytically in [4, 5]. The non-Coulomb [1] and ultra-
soft [2] computations require regularization and renormalization prescriptions, so that they
are scheme-dependent quantities. We computed them with conventional dimensional reg-
ularization and divergences are renormalized in MS scheme. Combining all corrections we
obtain the following numerical formula for the ground-state wave-function:

|ψ1(0)|2

|ψ
(0)
1 (0)|2

= 1 + αs(µ)

[

(

5.25− 0.32nf

)

L+ 0.21− 0.13nf

]

+ α2
s(µ)

[

(

18.39

−2.23nf + 0.07n2
f

)

L2 +
(

1.33− 0.35nf + 0.02n2
f

)

L+ 22.60− 1.23nf + 0.02n2
f

]

+α3
s(µ)

[

(

53.7− 9.8nf + 0.6n2
f − 0.01n3

f

)

L3 +
(

− 6.7 + 0.6nf − 0.07n2
f + 0.002n3

f

)

L2

+
(

236.6− 23.9nf + 0.8n2
f − 0.01n3

f + 15.0 lm
)

L− 22.3LUS + 3.0 lm − 1.5 l2m

+21.0 + 5.0nf − 0.3n2
f + 0.004n3

f + 0.0015 a3 +
δε
π

]

, (6)
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where L = ln (µ/(mCFαs(µ))), LUS = ln
(

e5/6µ/(2mα2
s(µ))

)

, lm = ln(µ/m), and nf is the
number of light quark flavors, a3

a is the constant part of the three loop QCD potential, and
δε is a contribution from the O(ε) terms of the non-Coulomb potentials given by

δε = C2
F

(

v
(1,ε)
m

8
+
v
(1,ε)
q

12
+
v
(1,ε)
p

8

)

−
CF

6
b
(ε)
2 . (7)

The effect of δε is estimated to be an order of magnitude smaller compared to other constant
terms [1], so we neglect it in our phenomenological analysis. The ln2 αs [6, 7] and lnαs [8, 9]
logarithmic terms in eq.(6) are already known.

From the divergent part of the wave-function calculation, the corresponding scale depen-
dence of c3 is extracted.b The matching coefficient cv reads

cv = 1 −
8

3π
αs(m) +

[

−
35

27
ln
µ2

m2
+

11nf

27π2
−

125 ζ(3)

9π2
−

14 ln 2

9
−

89

54π2
−

511

324

]

αs(m)2

+

[

(

43

36π
−

35nf

162π

)

ln2 µ
2

m2
+

(

1399nf

1944π
−

2818

405π
−

85 ln 2

9π

)

ln
µ2

m2
+
δc3
π3

]

αs(m)3. (8)

The constant part of δc3 is not fully known up to now, but the fermionic correction was
calculated in [10],

δc3, nf
= nf CF TF

[

39.6CA + 46.7CF − nf TF

(

163

162
+

4π2

27

)

− TF

(

557

162
−

26π2

81

)]

. (9)

The coefficient dv is known from [11], and given by

dv = 1 −

[

16

9π

(

1 + 3 ln
µ2

m2

)]

αs(µ) + · · · . (10)

3 Residue of the QCD two-point function

Now we combine all pieces and show numerical formulae for the residue of the QCD two-
point function. We use the same coupling αs(µ) c for the matching coefficient and the
NRQCD wave-function to construct the scale-invariant physical residue Zn.

aOnly a Padé estimate [12] a3, Pade = 6240 (fornf = 4), 3840 (for nf = 5) is known.
bThe result of [8] has been checked and one term (+ typos) of c3 was corrected in [2].
cIn eq.(8) αs(m) is re-expressed by αs(µ) using αs(m)/αs(µ) = 1 +

αs(µ)
4π

β0 ln µ2

m2
+

“

αs(µ)
4π

”2 “

β2
0 ln2 µ2

m2
+ β1 ln µ2

m2

”

+ · · · where βi are the coefficients of the QCD β-function in MS-scheme,

and αs ≡ α
(nf =4,5)
s for the bottom and top quarks, respectively.
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Figure 1: The scale dependence of the residue of the two-point function for the toponium
(left) and bottomonium (right), normalized by its zeroth order value at µ = mCFαs(µ).
The dotted line is LO and the solid line is NNNLO result.

For the ground state of top and bottom quarkonia, the residue is given by

Z1S(tt̄) =

{

1 +

[

3.66L− 2.13

]

αs(µ) +

[

8.93L2 − 6.14L+ 10.46− 7.26 lm

]

α2
s(µ)

+

[

18.17L3 − 20.26L2 + (110.82− 11.57 lm) L− 22.27LUS − 16.35 l2m − 22.65 lm

+ (22.60 + 0.0015 a3 + 0.32 δε + 0.0645 δc3)

]

α3
s(µ)

}

× |ψ
(0)
1S(tt̄)(0)|2 , (11)

Z1S(bb̄) =

{

1 +

[

3.98L− 2.00

]

αs(µ) +

[

10.55L2 − 6.51L+ 11.19− 7.44 lm

]

α2
s(µ)

+

[

23.33L3 − 23.12L2 + (125.14− 14.59 lm) L− 22.27LUS − 17.36 l2m − 26.61 lm

+ (17.44 + 0.0015 a3 + 0.32 δε + 0.0645 δc3)

]

α3
s(µ)

}

× |ψ
(0)

1S(bb̄)
(0)|2 (12)

where |ψ
(0)

1S(QQ̄)
(0)|2 = (mCFαs(µ))3/(8π) is the LO Coulomb wave-function. To see the

numerical significance we plug the following values into the formulae: for the top quark,
mt = 175 GeV, µ = mt CF αs(µ) = 32.62 GeV; for the bottom quark, mb = 5 GeV, µ =
mb CF αs(µ) = 2.02 GeV. We use a3 = a3, Pade, and the unknown O(ε) potentials as well as
non-nf term of δc3 are set to zero. We obtain the following numbers for the toponium and
bottomonium ground state at µ = mCFαs(µ),

Z1S(tt̄) =
(CF mt αs)

3

8π

[

1 − 2.13αs + 22.7α2
s +

(

− 38.8 + 5.8 a3 + 37.6 c3 ,nl

)

α3
s

]

, (13)

Z1S(bb̄) =
(CF mb αs)

3

8π

[

1 − 2.00αs + 17.9α2
s +

(

− 8.8 + 9.4 a3 + 30.3 c3 ,nl

)

α3
s

]

, (14)

where the coupling constant is αs = 0.14, 0.304 for the top and bottom quarkonia, respec-
tively.

In Fig.1 we show the scale dependence of the ground-state pole residue for toponium
and bottomonium. For the NNNLO lines δc3 is set to zero, while the gray band indicates
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the size of the contribution from the constant part of c3; the upper/lower edge of the band
is obtained by taking fermionic corrections δc3, nf

/ − δc3, nf
as an estimate of δc3.

d We
observe that the scale dependence of the toponium wave-function is reduced significantly
at NNNLO compared to NNLO as was also observed in renormalization group improved
NNLO calculation [13, 14]. Its precise value will be fixed only once the third order matching
coefficient is completely known. Since the threshold cross section is dominated by the
ground-state contribution, we expect that the scale dependence of the tt̄ threshold cross
section will be also improved at NNNLO. For the bottomonium wave-function, strong scale
dependence remains even at NNNLO and the perturbative expansion may be out of control.
Only if the constant part of the matching coefficient δc3 is negative in total, the scale
dependence of the bottomonium wave-function at the origin might be acceptable. The
complete knowledge of c3 is thus mandatory to draw the final conclusion on the size of
NNNLO correction.
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(2)
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