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We compare the theoretical frameworks and the phenomenological applications of the factorization approaches

to exclusive B meson decays, which include QCD-improved factorization, perturbative QCD, and soft-collinear

effective theory. Recent progress on two-body nonleptonic B meson decays made in these approaches are

reviewed.

1. Introduction

“Factorizations” in the naive factorization assump-
tion and in factorization theorem have very different
meanings. The former refers to the factorization of a
process into subprocesses. For example, a B meson
decay amplitude A(B → M1M2) is written, in the
factorization assumption, as the product [1],

A(B → M1M2) ∝ fM2
FBM1 , (1)

where the meson decay constant fM2
arises from the

production of the meson M2 from the vacuum, and
the form factor FBM1 is associated with the B →
M1 transition. The latter refers to the factorization
of perturbative and nonperturbative dynamics in a
QCD process. According to factorization theorem, the
above amplitude is expressed as

A(B → M1M2) ∝ φB ⊗ H ⊗ φM1
⊗ φM2

, (2)

where ⊗ denotes the convolution over parton kine-
matic variables, the hard kernel H absorbs perturba-
tive dynamics, and the B (M1, M2) meson distribu-
tion amplitude φB (φM1, φM2) absorbs nonperturba-
tive dynamics in the B → M1M2 decay. A piece of
contribution to B meson decays is factorizable, if it re-
spects either Eq. (1) in the sense of the factorization
assumption, or Eq. (2) in the sense of factorization
theorem. Below we shall use the terms ”factorizable”
and ”nonfactorizable” without specifying which sense
it refers to.

2. Collinear vs. kT Factorization

Both collinear and kT factorizations are the funda-
mental tools of perturbative QCD, where kT denotes
parton transverse momenta. We first explain these
two types of theorems by considering the simplest
scattering process π(P1)γ

∗ → γ(P2, ǫ) as an example.
The momentum P1 of the pion and the momentum P2

of the out-going on-shell photon are chosen as

P1 = (P+
1 , 0,0T ) , P2 = (0, P−

2 ,0T ) . (3)

The leading-order (LO) quark diagram, in which the
anti-quark q̄ carries the on-shell fractional momentum
k = (xP+

1 , 0,0T ) and the internal quark carries P2−k,
leads to the amplitude,

G(0)(x, Q2) =
tr[6 ǫ(6 P2− 6 k)γµ 6 P1γ5]

(P2 − k)2

= − tr[6 ǫ 6 P2γµ 6 P1γ5]

xQ2
, (4)

with the leading spin structure 6 P1γ5 of the pion and
the momentum transfer squared Q2 ≡ 2P1 · P2. We
have suppressed other constant factors, such as the
electric charge, the color number, and the pion decay
constant, which are irrelevant in the following discus-
sion.

The trivial collinear factorization of Eq. (4) reads,

G(0)(x, Q2) =

∫

dx′φ(0)(x; x′)H(0)(x′, Q2) ,

φ(0)(x; x′) = δ(x − x′) ,

H(0)(x, Q2) = − tr[6 ǫ 6 P2γµ 6 P1γ
5]

xQ2
. (5)

The zeroth-order distribution amplitude φ(0) is pro-
portional to δ(x−x′), implying that the parton enter-
ing the LO hard kernel H(0) carries the same momen-
tum as the parton entering the distribution amplitude
does. The trivial kT factorization of Eq. (4) reads [2],

G(0)(x, Q2) =

∫

dx′d2k′
T Φ(0)(x; x′, k′

T )

×H(0)(x′, Q2, k′
T ) ,

Φ(0)(x; x′, k′
T ) = δ(x − x′)δ(k′

T ) ,

H(0)(x, Q2, kT ) = − tr[6 ǫ 6 P2γµ 6 P1γ
5]

xQ2 + k2
T

. (6)

Because of the zeroth-order wave function Φ(0) ∝
δ(k′

T ), H(0) does not depend on the parton transverse
momentum actually.

The O(αs) quark diagrams for Eq. (4) from full
QCD are displayed in Fig. 1, in which the upper line
represents the q quark. The collinear factorization of
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P1 − k
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l

(a) (b) (c)

(d) (e) (f)

Figure 1: O(αs) quark diagrams for πγ∗

→ γ with × rep-
resenting the virtual photon vertex.

these radiative corrections is given by

G(1)(x, Q2) =

∫

dx′φ(1)(x; x′)H(0)(x′, Q2)

+H(1)(x′, Q2) , (7)

where the first-order distribution amplitude φ(1) is de-
fined by the effective diagrams in Fig. 2 [3]. Expres-
sions from Figs. 2(c), 2(e), and 2(f) are proportional to
δ(x−x′− l+/P+

1 ), where l is the loop momentum car-
ried by the collinear gluon. The δ-function indicates
that the exchange of the collinear gluon modifies the
momentum fraction of the parton entering H(0) from
x to x − l+/P+

1 . The kT factorization of Fig. 1 leads
to [2]

G(1)(x, Q2) =

∫

dx′d2k′
T Φ(1)(x; x′, k′

T ) (8)

×H(0)(x′, Q2, k′
T ) + H(1)(x, Q2) ,

where the first-order wave function Φ(1) from
Figs. 2(c), 2(e), and 2(f) is proportional to δ(x− x′ −
l+/P+

1 )δ(k′
T + lT ). In this case the collinear gluon ex-

change modifies both the longitudinal and transverse
parton momenta flowing into the hard kernel.

(a) (b) (c)

(d) (e) (f) (g)

Figure 2: O(αs) effective diagrams for the pion wave func-
tion.

It is observed that H(0) in Eq. (8) depends on k′
T

nontrivially in the first-order kT factorization. Being

convoluted with Φ(0), the partons entering the next-
to-leading (NLO) hard kernel H(1) are still on-shell.
To acquire a nontrivial kT dependence, H(1) must be
convoluted with the higher-order wave functions Φ(i),
i ≥ 1: the gluon exchanges in Φ(i) render the incoming
partons of H(1), ie., the incoming partons of the quark
diagrams G(1) and the effective diagrams Φ(1) off-shell
by k2

T [4]. We thus derive H(1)(x, Q2, kT ) according
to the formula,

H(1)(x, Q2, kT ) = G(1)(x, Q2, kT ) (9)

−
∫

dx′d2k′
T Φ(1)(x, kT ; x′, k′

T )H(0)(x′, Q2, k′
T ) ,

with the q̄ quark carrying the momentum k =
(xP+

1 , 0,kT ). This is the way to obtain a kT -
dependent hard kernel without breaking gauge invari-
ance, since the gauge dependences cancel between G(1)

and Φ(1). A physical quantity is wtitten as a convolu-
tion of a hard kernel with model wave functions, which
are determined by methods beyond a perturbation
theory, such as lattice QCD and QCD sum rules, or
extracted from experimental data. A gauge-invariant
hard kernel then leads to gauge-invariant predictions
from kT factorization.

3. B Decays in QCDF, SCET 60, and PQCD

Factorization theorems have been applied to exclu-
sive B meson decays, and different approaches have
been developed. Below we compare the frameworks of
perturbatiove QCD (PQCD) [5, 6, 7], QCD-improved
factorization (QCDF) [8], and soft-collinear effective
theory (SCET) [9, 10]. The B → π transition form
factor FBπ involved in the semileptonic decay B →
πlν is expressed, in collinear factorization, as

FBπ =

∫

dx1dx2φB(x1)H(x1, x2)φπ(x2), (10)

with the LO hard kernel H(0) ∝ (1 + 2x2)/(x1x
2
2).

The parton momentum fractions x1 and x2 are car-
ried by the spectator quarks on the B meson and
pion sides, respectively. Obviously, the above integral
is logarithmically divergent for the asymptotic model
φπ ∝ x(1 − x) [11].

An end-point singularity implies that exclusive B
meson decays are dominated by soft dynamics. That
is, a heavy-to-light form factor is not calculable in
collinear factorization, and FBπ should be treated as
a soft object [8]. This is the basis of QCDF, and
subleading corrections are added systematically [12].
The above treatment has been further elucidated in
the framework of SCET [13]: only the 1 term in H(0)

contains the end-point singularity, which leads to an
O(Λ), ie., soft object fNF. The 2x2 term does not,
leading to an O(

√
mBΛ) object fF with the B meson
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mass mB. Therefore, at leading power in 1/mB, the
B → π form factor can be split into the nonfactoriz-
able and factorizable components,

FBπ = fNF + fF , (11)

which have different power counting in the strong cou-
pling constant αs: the former is of O(α0

s) and the lat-
ter of O(αs). The values of fNF and fF have been
determined from a fit to the B → ππ data [14].

The formulation of the B → π transition in kT

factorization theorem is different. When the parton
transverse momenta are included, fNF does not de-
velop an end-point singularity, and both fNF and fF

are factorizable. Hence, they are of the same order
in αs, and can be combined into a single term, giving
[5, 15],

FBπ =

∫

dx1dx2d
2k1T d2k2T ΦB(x1, k1T )

× H(x1, x2, k1T , k2T )Φπ(x2, k2T ) . (12)

The end-point singularity is smeared into the large
logarithm ln2(mB/kT ), and absorbed into the pion
wave function Φπ. Resumming this logarithm to all
orders in the conjugate b space [16, 17], we derived the
Sudakov factor S(mB, b), which describes the parton
distribution in b. Since fNF has been included, the
large-energy symmetry [12] is respected in PQCD. Re-
cently, it was proposed that the end-point singularity
is attributed to a double counting of soft degrees of
freedom in collinear factorization [18]. The zero-bin
subtraction removes the double counting, and leads
to a modified SCET formalism for fNF, labelled by
SCET 60 hereafter. The power counting of SCET60 in
both 1/mB and αs is then consistent with that of
PQCD. The regularization of the end-point singularity
introduces the logarithms lnµ± in SCET60 [18], whose
treatment has not yet been explained.

When applying the above factorization approaches
to two-body nonleptonic B meson decays, further dif-
ference appears in the treatment of annihilation am-
plitudes. The O(αsm0/mB) annihilation amplitudes
from the scalar penguin operators are divergent in
collinear factorization, where m0 is the chiral enhance-
ment scale. Because of the end-point singularity, an
annihilation amplitude has been parameterized as

αs ln
mB

Λ

(

1 + ρAeiδA

)

, (13)

in QCDF [8], where Λ is a hadronic scale and the
free parameter ρA is postulated to vary in the range
0 ≤ ρA ≤ 1. It is not clear what mechanism gen-
erates the strong phase δA. With the similar zero-
bin subtraction, an annihilation amplitude is factor-
izable in SCET60, but found to be almost real [19]. A
strong phase can only be generated at loop level, ie.,
at O(α2

sΛ/mB). However, we notice that the residual

momentum carried by the b quark in a nonfactorizable
annihilation amplitude could result in a strong phase
of O(αsm0Λ/m2

B) [20], a new mechanism not included
in [19].

The scalar penguin annihilation amplitude is also
factorizable in kT factorization with the absence of
the end-point singularity. Furthermore, it was almost
imaginary in PQCD [6], whose corresponding mecha-
nism is similar to the Bander-Silverman-Soni one [21]:
when the u or c quark in a loop goes on mass shell,
a strong phase is produced. In the case of the anni-
hilation topology for heavy-to-light decays, the loop
is formed by the virtual particles in the LO PQCD
hard kernel and the infinitely many Sudakov gluons
exchanged between two partons in a light meson. The
virtual particle acquires the transverse momentum kT

through the Sudakov gluon exchange. A sizable strong
phase is then given, in terms of the principle-value
prescription for the virtual particle propagator, by

1

xm2
B − k2

T + iǫ
=

P

xm2
B − k2

T

− iπδ(xm2
B − k2

T ).(14)

Therefore, the treatment and the effect of the scalar
penguin annihilation amplitude are very different in
QCDF, SCET60, and PQCD.

Though the scalar penguin annihilation amplitude
is factorizable in both PQCD and SCET60, it is al-
most imaginary in the former, but real in the latter.
We argue that the above different opinions can be
discriminated by comparing the direct CP asymme-
tries in the charged B meson decays B± → K±π0

and B± → K±ρ0. The B± → K±π0 decays in-
volve a B meson transition to a pseudoscalar me-
son, so the penguin emission amplitude is propor-
tional to the constructive combination of the Wilson
coefficients a4 + 2(m0K/mB)a6, where m0K is the
chiral enhancement scale associated with the kaon.
The B± → K±ρ0 decays involve a B meson tran-
sition to a vector meson, so the penguin emission
amplitude is proportional to the destructive combi-
nation a4 − 2(m0K/mB)a6. The annihilation effect
is then less influential in the former than in the lat-
ter. If the scalar penguin annihilation is real, both
decays will exhibit small direct CP asymmetries, ie.,
ACP (B± → K±π0) ≈ ACP (B± → K±ρ0). If the
scalar penguin annihilation is imaginary, it will cause
a larger direct CP asymmetry in B± → K±ρ0, ie.,
ACP (B± → K±π0) ≪ ACP (B± → K±ρ0). The cur-
rent data ACP (B± → K±π0) = 0.047 ± 0.026 and
ACP (B± → K±ρ0) = 0.31+0.11

−0.10 [22] seem to prefer an
imaginary scalar penguin annihilation.

fpcp07 323



4 Flavor Physics and CP Violation Conference, Bled, 2007

4. Recent Results

4.1. The B → ππ Puzzle

According to a naive estimate of the color-
suppressed tree amplitude, the hierarchy of the
branching ratios B(B0 → π0π0) ∼ O(λ2)B(B0 →
π∓π±) is expected. However, the data [22]

B(B0 → π∓π±) = (5.2 ± 0.2) × 10−6 ,

B(B0 → π0π0) = (1.31 ± 0.21) × 10−6 , (15)

show B(B0 → π0π0) ∼ O(λ)B(B0 → π∓π±), giv-
ing rise to the B → ππ puzzle. As observed in
[23], the NLO corrections, despite of increasing the
color-suppressed tree amplitude significantly, are not
enough to enhance the B0 → π0π0 branching ratio to
the measured value. A much larger color-suppressed
tree amplitude, about the same order as the color-
allowed tree amplitude, must be obtained in order to
resolve the puzzle [24, 25]. To make sure that the
above NLO effects are reasonable, the PQCD formal-
ism has been applied to the B → ρρ decays [23],
which also receive the color-suppressed tree contri-
bution. It was found that the NLO PQCD predic-
tions are in agreement with the data B(B0 → ρ0ρ0) =
(1.16 ± 0.46) × 10−6 [22]. We conclude that it is un-
likely to accommodate the measured B0 → π0π0 and
ρ0ρ0 branching ratios simultaneously in PQCD, and
that the B → ππ puzzle remains.

It has been claimed that the B → ππ puzzle is re-
solved in the QCDF approach [8] with an input from
SCET [26, 27, 28]: the inclusion of the NLO jet func-
tion, the hard coefficient of SCETII, into the QCDF
formula for the color-suppressed tree amplitude gives
sufficient enhancement of the B0 → π0π0 branching
ratio, if adopting the parameter scenario ”S4” [29]. It
is necessary to investigate whether the proposed new
mechanism deteriorates the consistency of theoretical
results with other data. The formalism in [26] has
been extended to the B → ρρ decays as a check [23].
It was found that the NLO jet function overshoots
the observed B0 → ρ0ρ0 branching ratio very much
as adopting ”S4”. That is, it is also unlikely to ac-
commodate the B → ππ and ρρ data simultaneously
in QCDF.

4.2. The B → φK∗ Puzzle

For penguin-dominated B → V V decays, such as
those listed in Table I [22], the polarization fractions
deviate from the naive counting rules based on kine-
matics [30]. This is the so-called the B → φK∗ puz-
zle. Many attempts to resolve the B → φK∗ polariza-
tions have been made [31], which include new physics
[32, 33, 34, 35, 36], the annihilation contribution
[37, 38] in the QCDF approach, the charming penguin
in SCET [14], the rescattering effect [39, 40, 41], and

Table I Polarization fractions in the penguin-dominated
B → V V decays.

Mode Belle BaBar

φK∗+ 0.52 ± 0.08 ± 0.03 0.46 ± 0.12 ± 0.03

φK∗0 0.45 ± 0.05 ± 0.02 0.52 ± 0.05 ± 0.02

K∗+ρ0 0.9 ± 0.2 [44]

K∗0ρ+ 0.43 ± 0.11+0.05

−0.02 0.52 ± 0.10 ± 0.04[44]

the b → sg (the magnetic penguin) [42] and b → sγ
[43] transitions. The annihilation contribution from
the scalar penguin operators improves the consistency
with the data, because it is of the same order for all the
three final helicity states, and could enhance the trans-
verse polarization fractions [30]. However, the PQCD
analysis of the scalar penguin annihilation amplitudes
indicates that the B → φK∗ puzzle can not be re-
solved completely [31]. A reduction of the B → K∗

form factor A0, which is associated with the longitu-
dinal polarization, further helps accommodating the
data [45]. Note that there has not yet been any mea-
surement, which constrains A0. Hence, the value of
A0 should have a large uncertainty.

The penguin-dominated B → K∗ρ decays are ex-
pected to exhibit similar polarization fractions. This
is the reason the longitudinal polarization fraction in
the B+ → K∗0ρ+ decay, which contains only the pen-
guin contribution, is close to fL(φK∗) ∼ 0.5 as listed
in Table I. Another mode B+ → K∗+ρ0, nevertheless,
shows a large longitudinal polarization fraction almost
unity. This mode involves tree amplitudes, which are
subdominant, and should not cause a significant devi-
ation from fL ∼ 0.5. Though the data of fL(K∗0ρ+)
from BaBar still suffer a large error [44], the dra-
matically different longitudinal polarization fractions,
fL(K∗+ρ0) 6= fL(K∗0ρ+), demand a deeper under-
standing. It is highly suggested to update or perform
the measurement of fL(K∗+ρ0). It is also worthwhile
to investigate the B → K∗K∗ decays [45, 46], whose
measurement can help discriminating the various pro-
posals for resolving the B → φK∗ puzzle.

4.3. The B → Kπ Puzzle

The B0 → K±π∓ decays depend on the tree ampli-
tude T ′ and the QCD penguin amplitude P ′. The data
of the direct CP asymmetry ACP (B0 → K±π∓) ≈
−10% then imply a sizable relative strong phase be-
tween T ′ and P ′, which verifies the LO PQCD pre-
diction made years ago [6]. The B± → K±π0 de-
cays contain the additional color-suppressed tree am-
plitude C′ and electroweak penguin amplitude P ′

ew .
Since both C′ and P ′

ew are subdominant, the ap-
proximate equality for the direct CP asymmetries
ACP (B± → K±π0) ≈ ACP (B0 → K±π∓) is ex-
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pected. However, this naive expectation is in conflict
with the data [22],

ACP (B0 → K±π∓) = −0.093± 0.015

ACP (B± → K±π0) = 0.047± 0.026 , (16)

leading to one of the B → Kπ puzzles.
While LO PQCD gives a negligible C′ [6, 7], it is

possible that this supposedly tiny amplitude receives a
significant subleading correction. Note that the small
C′ is attributed to the accidental cancellation between
the Wilson coefficients C1 and C2/Nc at the scale of
the b quark mass mb. In [47] the important NLO con-
tributions to the B → Kπ decays from the vertex cor-
rections, the quark loops, and the magnetic penguins
were calculated. It was observed that the vertex cor-
rections increase C′ by a factor of 3, and induce a
large phase about −80o relative to T ′. The large and
imaginary C′ then renders the total tree amplitude
T ′ + C′ more or less parallel to the total penguin am-
plitude P ′ + P ′

ew in the B± → K±π0 decays, leading
to nearly vanishing ACP (B± → K±π0) = (−1+3

−6)%
at NLO (it is about -8% at LO). We conclude that
the B → Kπ puzzle has been alleviated, but not yet
gone away completely. Whether new physics effects
[48, 49] are called for will become clear when the data
get precise. More detailed discussion on this subject
can be found in [50].

4.4. Nonleptonic Bs Decays

Two-body nonleptonic Bs meson decays are inter-
esting, since their study can test SU(3) or U-spin sym-
metry. The framework for these decays is basically
identical to that for Bu,d meson decays. The results
of two-body nonleptonic Bs meson decays from differ-
ent factorization approaches can be found in [29] for
QCDF, in [51] for SCET, and in [52, 53] for PQCD.
Roughly speaking, the branching ratios predicted by
QCDF and by PQCD are similar, but the predicted
direct CP asymmetries are usually opposite in sign.

5. Conclusion

The factorization approaches are systematic theo-
retical tools for exclusive B meson decays, in which
hadronic inputs are universal, and the hard kernels
can be computed order by order. NLO corrections
have been obtained for some B meson decay modes,
and the consistency between the theoretical predic-
tions and the experimental data is improved in gen-
eral. More need to be done in order to pin down QCD
uncertainty especially for those quantities exhibiting
puzzling behaviors. Higher-power corrections are an-
other important source of QCD uncertainty, which de-
serves a careful investigation. The recent development

in SCET60 is encouraging, whose counting rules be-
come consistent with those in PQCD. However, the
arbitrary logarithms ln µ± resulting from the zero-bin
subtraction needs to be handled (recall that the dou-
ble logarithm ln2(mB/kT ) from the smearing of the
end-point singularity has been resummed in PQCD).
We did not review the progress on the ∆S puzzle ap-
pearing in the extraction of the weak phase sin(2φ1)
from penguin-dominated B meson decays. For the
detail, refer to [54].
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