Long baseline experiments (JJ) + strategy of future neutrino experiments

Hisakazu Minakata Tokyo Metropolitan University

In the last several years we have experienced the most exciting era in physics

oscillation has been seen!

MNS matrix and mass pattern

mass hierarchy & absolute mass scale m^2 Ve m_3^2 solar~5×10⁻⁵eV² m_1^2 atmospheric ~3×10-3eV2 atmospheric ~3×10-3eV2 5×10-5eV2 m_3^2 HQL2006@Munich

Pressing questions

- Origin of masses and mixing
- Large lepton mixing vs. small quark mixing
- Quark lepton symmetry/relationship incl. flavor symmetry
- How to determine remaining parameters?...

Need for some strategic thoughts?

- 1. How to detect nonzero 13
- 2. How to measure CP violation phase
- 3. A coupled problem; CPV-mass hierarchy

$_{13}$ first

October 16-20, 2006

HQL2006@Munich

• P($->_{e}$) is the interference between ->1 -----> 1->e and ->2 ----> 2->e ->3 -----> 3->e

Reactor neutrino experiments

Reactor measurement of ₁₃

- Independent of , matter effect, ₂₃, ₁₂, solar m²
- => Pure measurement of

Figure 3: Probability of ν_e disappearance versus L/E for θ_{13} at its current upper limit

October 16-20, 2006

13

HQL2006@Munich

Varying proposals over the globe

The Chooz site

2x12.5 tons, D1=100-200m, D2=1050m. Sensitivity: 3 years → sin²(2θ₁₃) < ~0.03

LBL measurement of
$$_{13} (\leq JJ)$$

 $P(\nu_{\mu} \rightarrow \nu_{e}) = |\sqrt{P_{atm}} + e^{i\left(\delta \pm \frac{\Delta_{31}}{2}\right)}\sqrt{P_{solar}}|^{2}$
 $P_{atm} = \left(s_{13}s_{23}\Delta_{31}\frac{\sin\left(\frac{\Delta_{31}\mp aL}{2}\right)}{\left(\frac{\Delta_{31}\mp aL}{2}\right)}\right)^{2}$
 $P_{atm} = \left(c_{12}s_{12}c_{23}\Delta_{21}\frac{\sin\left(\frac{aL}{2}\right)}{\left(\frac{aL}{2}\right)}\right)^{2}$
 $P_{solar} = \left(c_{12}s_{12}c_{23}\Delta_{21}\frac{\sin\left(\frac{aL}{2}\right)}{\left(\frac{aL}{2}\right)}\right)^{2}$
 $\Delta_{31} \equiv \frac{|\Delta m_{31}^{2}|L}{2E}, \ a = \sqrt{2}G_{F}N_{e}(x),$
 $\pm = \text{sign of }\Delta m_{31}^{2}$

Collaboration (at present): Canada, France, Germany, Italy, Japan, Korea, Poland, Russia, Spain, Switzerland, UK, USA

For details: I. Kato' talk

Status of J-PARC construction

Hadron Experimental Hall → Buildings for LINAC and 3GeV PS finished. 50 GeV →50GeV PS under Materials & Life construction Experimental Hall → First beam on 50GeV **PS in 2008** Neutrino (First neutrino beam in 2009.) 3 GeV About 70% of the facilities were completed. Linac February, 2006

Installation of Accelerator components

Neutrino beam line construction

Near Detectors @ 280m

Getting the most from T2K

In order to get the best sensitivity from T2K, one has to know the neutrino spectrum (both v_{μ} and v_{e}) precisely before the oscillation.

J-PARC schedule & Beam Power estimation

Measurement of Δm^2 and $\sin^2 2\theta_{23}$

 $(\Delta m_{12}^2 = 0 \text{ assumed, matter effect not included})$

POL(Pattern of Light)fit $-\pi^0$ fitter –

- Target: FCFV 1R-elike events
- ▲L≡Likelihood(2γ assump.) –
 Likelihood(electron assump.)
- Try to reconstruct two γ rings
- Input: vertex, visible energy, and the $1^{st} \gamma$ direction by the standard fitter
- Compare observed & expected (direct+scatter) charge
- Vary the $2^{nd} \gamma$ direction and the energy fraction until the best match found

HQL2006@Munich

S. Mine (UCI) @ NP04

Events vs. Selections

Events vs. selections

 Δm^2 =2.5x10⁻³eV²,sin²2 θ_{13} =0.1

(events / 22.5kt / 5yrs)

	ν _µ CC	ν _μ NC	beam v _e	v _e (CC)
	BG	BG	BG	Signal
FCFV,	2849	1082	248	290
E _{vis} >100				
1R	1313(46%)	277(26%)	114(46%)	243(84%)
e-like	51(1.8%)	219(20%)	111(45%)	240(83%)
no decay-e	15(0.5%)	195(18%)	92(37%)	222(77%)
0.35 <e<sub>v^{rec}< 0.85</e<sub>	2.2(0.1%)	58(5%)	27(11%)	173(60%)
∆L<80,M<1 00,cos<0.9	12±0.8(0.3%) (stat.)		16±0.4(6%) (stat.)	122±3(42%) (stat.)
(old π^0 fitter: 12			15	109)

October 16-20, 2006

HQL2006@Munich

Japanese Fiscal Year (Apr-Mar)

A machinery in my talk

Oscillation probability draw ellipse if plotted in bi-P plane Role played by CP phase δ and the matter clearly distinguished

NuMI in the Collider Era

- MI ramp time ~1.5sec
- MI is fed 1.56µs batches from 8 GeV Booster
- Simultaneous acceleration & dual extraction of protons for
 - Production of *p* (Tevatron collider)
 - Production of neutrinos (NuMI)
- NuMI designed for
 - 8.67 μs single turn extraction
 - 2-3×10¹³ppp @ 120 GeV
- Current limitations:
 - Booster can deliver at most 5×10¹²p/batch
 - Gymnastics associated with mixed Pbar/NuMI operations

8 GeV/c Booster

Off-Axis Spectra

- Benefits of off-axis spectrum:
 - More flux near oscillation maximum
 - Reduction of High Energy Tail reduces NC Feed-down
 - Concentration of v_e from oscillation relative to intrinsic beam v_e (from 3-body K and µ decay)

- 503 miles (810 km) from Fermilab
- 3.6 Mile Access Road
- Electrical Upgrade

Ash River

Wis.

Fermil

111.

Duluth Minn.

Minneapolis

Far Detector

Performance

σ Sensitivity to $\theta_{13} \neq 0$

95% CL Resolution of the Mass Ordering

95% CL Resolution of the Mass Hierarchy

35

Combining NOvA and T2K

Need for beyond the next generation (NG) experiments

- NG exp. will not determine (unless very lucky) the mass hierarchy
- NG exp. does not have sensitivity to CP violation
- NG exp. may not be able to see nonzero θ_{13} (what happens then?)
- Question: how accurately should we need to know Δm^2 and θ 's?

Quark-lepton complementarity ?

 $\theta_{\rm C} + \theta_{\rm solar} = 45.1^{\circ} + -2.4^{\circ} (1\sigma)$

October 16-20, 2006

Foreseeing the future

October 16-20, 2006

Things changes at $sin^22\theta_{13}$ ~0.01

QL2006@Munich

- Conventional super v_{μ} beam + Mton water detector work
- Known beam technology
- Background highly nontrivial
- v_e beam contamination not negligible but tolerable

- beta beam / neutrino factory required
- Requires long-term R&D efforts
- Low background
- pure ν_e beam (β) / well understood combination of ν_o and

 ν_{μ} beam

October 16-20, 20

- v-factory uses beam of 4th generation.
- Beta-beam uses 3rd generation beam.
- Beta-beam is technically closer to existing/used accelerator technology.

Degeneracy; a notorious obstacle

Cause of the degeneracy; easy to understand

- You can draw two ellipses from a point in P-Pbar space
 - Intrinsic degeneracy
- Doubled by the unknown sign of ∆m²

Structure of intrinsic & sign- Δm^2 degeneracy in (matter) perturbative regime

- Intrinsic degeneracy; $\delta_2 = \pi - \delta_1$
- $sign(\Delta m^2)$ - δ degeneracy arises because P is approx. invariant under:

•
$$\Delta m^2 - \Delta m^2$$

•
$$\delta \longrightarrow \pi - \delta$$

Conven tional superbeam +

T2KK; Tokai-to-Kamioka-Korea identical two-detector complex

 An improvement over T2K II design with Hyper-K @ Kamioka with 1 megaton water

What's good in -T2KK? (what about NOVA?)

October 16-20, 2006

#1. Current design of Hyper-Kamiokande contains 2 tanks !

T2KK vs. NOVA with 2nd detector (LOI)

- $\Delta_{1st} = 0.8 \pi$
- Δ_{2nd} ~2.7 π
- (aL/ Δ) _{1st} = 0.17
- $(aL/\Delta)_{2nd} = 0.07$

- $\Delta_{1st} = \pi$
- Δ_{2nd} ~3 π
- (aL/ Δ) _{1st} = 0.05
- $(aL/\Delta)_{2nd} = 0.05$

Sensitive to δ because energy dependence is far more dynamic in 2nd oscillation maximum Kamioka (L=295 km) Korea (L=1050 km) 8 E = 0.5 GeV (Normal) E = 0.6 GeV (Normal) E = 0.7 GeV (Normal) 6 E = 0.8 GeV (Normal) $P(\overline{v} \rightarrow \overline{v}_{e}) [\%]$ E = 0.5 GeV (Inverted) E = 0.6 GeV (Inverted) E = 0.7 GeV (Inverted) E = 0.8 GeV (Inverted) 0 3 5 3 8 2 6 () 5 6 $P(\nu_{\mu} \rightarrow \nu_{\mu}) [\%]$

Spectral information solves degeneracy

Spectral information solves intrinsic degeneracy

October 16-20, 2006

χ^2 definition

$$N(e)_{i}^{\exp} = N(e)_{i}^{\mathrm{BG}} \cdot (1 + \sum_{j=1,2,7} f(e)_{j}^{i} \cdot \epsilon_{j}) + N(e)_{i}^{\mathrm{signal}} \cdot (1 + \sum_{j=3,7} f(e)_{j}^{i} \cdot \epsilon_{j})$$

$$N(\mu)_{i}^{\exp} = N(\mu)_{i}^{BG} \cdot (1 + \sum_{j=4,5,7} f(\mu)_{j}^{i} \cdot \epsilon_{j}) + N(\mu)_{i}^{\text{signal}} \cdot (1 + \sum_{j=5,6,7} f(\mu)_{j}^{i} \cdot \epsilon_{j})$$

 $\begin{array}{l} f^{i}{}_{j}: \mbox{fractional change in the predicted event rate in the i^{th} bin \\ \mbox{due to a variation of the parameter ϵ_{j}} \\ \epsilon_{j}: \mbox{systematic error parameters, which are varied to minimize χ^{2}} \\ \mbox{for each chioce of the oscillation parameters} \end{array}$

October 16-2₽ 2006 @ Mani PRD66 (2002) 053010

Effect of the solar term

T2KK vs. T2K II Comparison

Octant ambiguity of θ_{23} can be resolved if $\sin^2 2\theta_{23} < \sim 0.97$ at 2σ (almost independent of the value of $\sin^2 2\theta_{13}$ and mass hierarchy).

Can resolve the 8 fold degeneracy of the oscillation parameters.

In a nutshell, 8 fold degeneracy can be resolved by T2KK because ..

- intrinsic degeneracy is resolved by spectrum information
- sign- Δm^2 degeneracy is solved with matter effect + 2 identical detector comparison
- θ₂₃ octant degeneracy is solved by identifying the solar oscillation effect in T2KK

Sensitivity to mass hierarchy: T2K-II vs. (Kam+Korea) vs. Nova

October 16-20, 2006

HQL2006@Munich

Expected sensitivity (2)

hep-ph/0504026

Total mass of the detectors = 0.54 Mton fid. mass 4 years neutrino beam + 4 years anti-neutrino beam

Beta beam

October 16-20, 2006

Beta beam in a word

Figure 6. Comparison of neutrino fluxes from a super-beam (SPL) and a betabeam. The neutrino beams are produced at CERN and sent to the Fréjus Underground Laboratory, 130 km from CERN. Two options for the beta-beam are shown here. Left: The ions circulate together in the storage ring, with $\gamma = 60$ (100) for ⁶He (¹⁸Ne) (Mezzetto 2005). Right: The ions circulate at the same $\gamma = 100$, independently, in the storage ring. Note that the average neutrino energies are related to the ion boost through $E_{\nu} \approx 2\gamma Q_{\beta}$ (Guglielmi *et al* 2005).

October 16-20, 2006

What is good in Beta beam?

- pure v_e (¹⁸Ne) or v_e -bar (⁶He) beam
- charged pion background seems tolerable
- e-μ separation required but no charge ID required
- multi-MW proton beam NOT required

Low vs. high y beta beam

- Setup I, low energy: $\gamma = 60$ for ⁶He and $\gamma = 100$ for ¹⁸Ne, with L = 130 km (CERN–Fréjus) as in [12, 22]. ⁷
- Setup II, medium energy: $\gamma = 350$ for ⁶He and $\gamma = 580$ for ¹⁸Ne, with L = 732 km (e.g. CERN–Gran Sasso with a refurbished SPS or with the LHC, FNAL–Soudan).
- Setup III, high energy: γ = 1500 for ⁶He and γ = 2500 for ¹⁸Ne, with L = 3000 km (e.g. CERN–Canary islands with the LHC).

October 16-20, 2006

Figure 13: Region where δ can be distinguished from $\delta = 0$ or $\delta = 180^{\circ}$ with a 99% CL for setup I (solid), setup II with the UNO-type detector of 400 kton described in section 3.1 (dashed) and with the same detector with a factor 10 smaller mass (dashed-dotted) and setup III (dotted) with a 40 kton tracking calorimeter described in section 3.4.

Neutrino spectrum from B-8 decay

October 16-20, 2006

Production with re-circulating ions

Production of unstable isotopes:

• Primary ions circulate in the beam until they undergo nuclear processes in the thin target foil.

Injection

• Permanent accumulation of primary ions: Single ionized ions are fully stripped by a thin foil.

Compensating ionization losses:

• Acceleration at each turn by an adequate RF-cavity

Ion channel:

- E.g.: ${}^{7}\text{Li} + D \rightarrow {}^{8}\text{Li} + p$ - ${}^{8}\text{Li:} t_{1/2} \sim 0.8 \text{ s}, < E_{v} > \sim 6.7 \text{MeV}$
- Rate: > 10^{14} ions/s
- C. Rubbia et al. (see talk this week)

Beta vs. T2KK

Physics reach; low γ

- EURISOL scenario
 - γ=100
 - each ⁶He and ¹⁸Ne with a 5-year run
 - 2.9*10¹⁸ ⁶He decays/year or 1.1*10¹⁸ ⁶Ne decays/year

October 16-20, 2006

Neutrino factory

HQL2006@Munich

October 16-20, 2006

What is good in Neutrino factory ?

- well understood combination of v_e and v_μ beam with precisely (~10⁻⁵) known muon energy
- small background (how small, 10⁻⁴ 10⁻⁵ ?)
- muon charge ID required
- multi-MW proton beam required

-- Neutrino Factory --CERN lavout

October 16-20, 2006

HQL2006@Munich

Figure 8: The CP trajectory diagram in bi-probability plane for L = 3000 km and much higher neutrino energies E = 10-50 GeV which correspond to so called "Neutrino Factory" situation. The mixing parameters are fixed to be the same as in figure 1 except that we take $\rho Y_e = 2.0$ g/cm³.

Optimal energy E & baseline L

- E = 30 ~ 50 GeV
- L ~ 3000 km
- # of events = $(E^2 / L^2) \times E \times (L/E)$

$$\begin{array}{l} \text{Magic baseline or refraction length} \\ P(\nu_{\mu} \rightarrow \nu_{e}) &= |\sqrt{P_{atm}} + \mathrm{e}^{i\left(\delta \pm \frac{\Delta_{31}}{2}\right)} \sqrt{P_{solar}}|^{2} \\ P_{atm} &= \left(s_{13}s_{23}\Delta_{31}\frac{\sin\left(\frac{\Delta_{31}\mp aL}{2}\right)}{\left(\frac{\Delta_{31}\mp aL}{2}\right)}\right)^{2} \\ P_{solar} &= \left(c_{12}s_{12}c_{23}\Delta_{21}\frac{\sin\left(\frac{aL}{2}\right)}{\left(\frac{aL}{2}\right)}\right)^{2} \\ \Delta_{31} &\equiv \frac{|\Delta m_{31}^{2}|L}{2E}, \ a = \sqrt{2}G_{F}N_{e}(x), \\ &\pm \mathrm{sign of }\Delta m_{31}^{2} \end{array}$$

Nufact sensitivity

October 16-20, 2006

HQL2006@Munich

Conclusion

- The next-generation and some future options for LBL experiments are reviewed
- still long way to complete the MNS matrix; θ_{13} first, and then δ and mass hierarchy
- T2KK is powerful enough to solve 8-fold parameter degeneracy in situ
- if $\theta_{13} < 3^{\circ}$, we need β beam and/or neutrino factory; the choice is highly debatable -> exciting possibilities because the small θ_{13} may imply "symmetry"