Lepton Flavour Violation and Rare Lepton Decays

T. Mori The University of Tokyo

HQL2006, Munich

Topics to Cover

- Why Is Lepton Flavor Violation Interesting?
 LFV Tau Decays at B Factories (very briefly)
 LFV Muon Decays
 - Muon to Electron Conversion
 - ✓ Muon Decay to Electron and Gamma
 ☑ MEG experiment

Why LFV interesting?

Neutrino LFV --> LFV among charged leptons! © LFV in charged leptons Is NEW PHYSICS. Some experiments are already sensitive to SUSY GUTs, seesaw, and possibly more. ✓ So just find it! Quark FV is generally contaminated by SM. Looking for tiny deviations is not easy.

Lepton Flavor Violating Process

Lepton Flavor Violating Process

TeV scale new physics

Synergy w/ LHC & ILC

Lepton Flavor Violating Process

LFV Tau Decays at B Factories

B Factory Experiments

F/B asymmetric detectors Good vertex resolution and particle ID ability

Accumulated data: >4.5x10⁸ τ-pairs at Belle, >3.0x10⁸ τ-pairs at BaBar Br~O(10⁻⁸) sensitivity!

Analysis Method

Tag a tau decay on one side

Look for a LFV decay on the other side

a candidate $\tau \rightarrow \mu \gamma$ event

Recent Updates by Belle

T.Ohshima @Tau06

$\tau \rightarrow \mu \gamma$ search

optimization of selection criteria for increased data

Belle + BaBar

$ au^{\pm} ightarrow e^{\pm} \gamma$	Luminosity	ε	Background events					
		(%)	Expected	Observed				
BABAR	232.2 fb^{-1}	4.70 ± 0.29	1.9 ± 0.4	1				
Belle	535.0 fb^{-1}	2.99 ± 0.13	$5.14^{+2.6}_{-1.9}$	5				
BABAR & BELLE	767.2 fb $^{-1}$	3.51 ± 0.13	7.0 ± 2.3	6				
$\mathcal{B}(au^{\pm} ightarrow e^{\pm} \gamma) < 9.4 imes 10^{-8}$ @ 90% C.L.								
$ au^{\pm} ightarrow \mu^{\pm} \gamma$	Luminosity	ε	Backgrou	nd events				
$ au^{\pm} ightarrow \mu^{\pm} \gamma$	Luminosity	ε (%)	Backgrou Expected	nd events Observed				
$ au^{\pm} ightarrow \mu^{\pm} \gamma$ BABAR	Luminosity 232.2 fb ⁻¹	ε (%) 7.42 \pm 0.65	Backgrou Expected 6.2 ± 0.5	nd events Observed 4				
$ au^{\pm} ightarrow \mu^{\pm} \gamma$ BABAR BELLE	Luminosity 232.2 fb ⁻¹ 535.0 fb ⁻¹	ε (%) 7.42 ± 0.65 5.07 ± 0.20	Backgrou Expected 6.2 ± 0.5 $13.9^{+3.3}_{-2.6}$	nd events Observed 4 10				
$ au^{\pm} ightarrow \mu^{\pm} \gamma$ BABAR BELLE BABAR & BELLE	Luminosity 232.2 fb ⁻¹ 535.0 fb ⁻¹ 767.2 fb ⁻¹	ε (%) 7.42 ± 0.65 5.07 ± 0.20 5.78 ± 0.24	Backgrou Expected 6.2 ± 0.5 $13.9^{+3.3}_{-2.6}$ 20.1 ± 3.0	nd events Observed 4 10 14				

S.Banerjee @Tau06

Tau decays vs. Muon decays 10⁻⁸ SPS 1a $m_{N1} = 10^{10} \text{ GeV}, m_{N2} = 10^{11} \text{ GeV}$ 10⁻⁹ $m_{v1} = 10^{-5} eV$ $0 \le |\theta_1| \le \pi/4$ 10⁻¹⁰ $0 \le |\theta_2| \le \pi/4$ BR ($\mu \rightarrow e \gamma$) MEGA $\theta_3 = 0$ 10⁻¹¹ 10⁻¹² $m_{N3} = 10^{14} \text{ GeV}$ 10⁻¹³ 3° 5° 10⁻¹⁴ $m_{N3} = 10^{13} \text{ GeV}$ $10^{-15} \frac{m_{N3}}{10} = 10^{12} \text{ GeV}$ 10° $\theta_{13} =$ 10-12 10⁻¹⁴ 10-11 10⁻⁷ 10-13 10⁻¹⁰ 10⁻⁹ 10⁻⁸ BR ($\tau \rightarrow \mu \gamma$) M.J.Herrero @Tau06 CMSSM (full RGE) + V_R + seesaw + viable BAU + EDM limits

PRD73 055003(2006), hep-ph/0607263

other SPS points

LFV Muon Decays

LFV Muon Decays

Most sensitive to SUSY GUT and SUSY Seesaw models

Predicted branching ratios are within the reach of the next experiments !

Two processes: $\mu \rightarrow e$ conversion vs. $\mu \rightarrow e\gamma$

✓ a comment on prospects for $\mu \rightarrow eee$

Muon to Electron Conversion

$\mu \rightarrow e \text{ conversion}$

 μ^{-} to make a muonic atom

a single electron with E_e = M_{\mu} - δ

Background:

- Decay in orbit $\sim (E_{max} E_e)^5$
- Beam related → next page

$\mu \rightarrow e \text{ conversion}$

Prompt Beam Induced Background

SINDRUM II @PSI

in coincidence with 20nsec Cyclotron RF ~ pion decay in flight

@ PSI

Final result on mu - e conversion on Gold target is being prepared for publication

< 7 x 10⁻¹³ 90%CL

~ 2 x 10⁻¹⁰ for $\mu \rightarrow e\gamma$

MECO Experiment @BNL (cancelled)

Proton beam

Beam-related background

e.g. radiative pion capture

Proposed Muon Facility at J-PARC

PRISM/PRIME for $\mu^- N \rightarrow e^- N$

A high-quality beam is essential to carry out $\mu^- N \rightarrow e^- N$ at high sensitivity.

PRISM

- (=Phase Rotated Intense Slow Muon source)
- High muon intensity
 - 10¹¹ 10¹² µ⁻/sec
- Low energy 68 MeV/c
- Pulsed beam
 - Rejection of background coming from proton
- Narrow energy spread (by phase rotation)
 - ΔE/E = ±0.5~1.0 MeV
 - thinner muon-stopping target
 - Better e⁻ momentum/energy resolution while keeping high muon stopping efficiency
- Less beam contamination
 - Practically no pion contamination π/μ ~ 10⁻¹⁸

- Year 2003-2007
 - PRISM-FFAG (phase rotator) is under construction
- Phase-I : construction and test of PRISM
- Phase-II : installation of PRISM to high intensity proton machine for mu-e. search.
- GOAL: B(µ⁻ N → e⁻ N) < 10⁻¹⁸

Not Funded

Accelerator Studies in Progress

Clear 2-body kinematics

Good detector system Is essential Use μ^{\star} to avoid capture inside stopping target

Background dominated by Accidental coincidence

- \rightarrow lower μ rate is better
- \rightarrow DC μ beam is best

"surface muon beam": 100% polarized

MEG Experiment

a simple arithmetic to achieve a 10⁻¹³-10⁻¹⁴ sensitivity

10^{13} muons / a year ~ 10^7 sec / efficiency ~ 0.1

 $= \sim 10^7$ muons / sec

High rate experiment

Two Types of Backgrounds

radiative decays ~ manageable

accidental overlaps dominant

radiative decays e⁺ annihilation in flight

lower µ rate is better → DC beam

Accidental coincidence of γ and e⁺ is the main background

So we need:

High rate (~10⁷/sec) DC muon beam

Spectrometer that can manage high rate e⁺

 \bigcirc High resolution γ -ray detector

The MEG Experiment

The $\mu \rightarrow e\gamma$ Experiment at PSI

3 Techniques that enabled the experiment

LXe scintillation γ -ray detector

COBRA magnet w/ graded B field

Most intensive DC muon beam (10⁸/sec)

The MEG experiment

Approved at Paul Scherrer Institut, Switzerland in 1999

Aiming at a sensitivity of 10⁻¹³, a possible future upgrade to 10⁻¹⁴ Detectors currently being built and installed

The Muon Beam

The 1 MW Cyclotron Paul Scherrer Institut Switzerland

Proton energy: 590MeV Nominal operation current: 1.8mA. Max > 2.0mA possible.

PSI Proton Cyclotron 590MeV, >1.8mA

πE5 area @PSI

Muon beam being tuned down to the target position

> 10⁸ muon stops /sec ~10mm spot size

The Positron Spectrometer

specially graded B field

The COBRA Spectrometer

compensation coils

LXe detector prototype

COBRA magnet

low B field at LXe detector

Drift Chambers

very low material to avoid multiple scattering and positron annihilation in flight

Drift Chamber Design

Z-direction measurement Vernier pattern is printed on cathode plane. Using the ratio of induced positive charge on each vernier pad, we can get the z-position measurement with high accuracy !!

opened-frame (Carbon fiber)

R-direction measurement

Cathode foil Aluminized Polyimide (¹250nm Al deposition on ¹12.5µm film)

sense (Ni/Cr, 25um, 0.5N) potential (Be/Cu, 50um, 1.1N) Half the DCs to be installed next week

Timing Counters

Two layers of scintillators:

- outer thick bars timing
- inner thin fibers redundant Z meas

Expe. application	size(cm)	Scinti.	PMT	L(att) cm	σ meas)	σ (exp)
G.D.Agostini	3x15x100	NE114	XP2020	200	120	60
T.Tanimori	3x20x150	SCSN38	R1332	180	140	110
T.Sugitate	4x3.5x100	SCSN23	R1828	200	50	53
R.T.Gile	5x10x280	BC408	XP2020	270	110	137
TOPAZ	4.2x13x400	BC412	R1828	300	210	240
R.Stroynowski	2x3x300	SCSN38	XP2020	180	180	420
Belle	4x6x255	BC408	R6680	250	90	143
MEG	4x4x90	BC404	R5924	270	38	43

Currently being installed inside the magnet

N₂ bag to protect PMTs from He

The LXe Gamma-ray Detector

LXe Gamma Ray Detector

- Scintillation only: High Light Yield, Fast Signal -- Good Resolutions
 - Measures Energy, Time and Position of Gamma Rays
- 3 ton (1000 liters) LXe with ~850 PMTs
- waveform digitizing to reject pile-up
- R&D issues: low temperature (165K), VUV light, H₂O purification

cryostat

Scintillation Light Attenuation by Water

Gas & liquid phase purification successfully tested: gas - metal getter (zirconium) ~0.5 l/h liquid - molecular sieves ~100 l/h

light attenuation > ~3m

Detector Performance Verified

100 liter Prototype Detector

Now Under Construction

Calibration & Monitoring of LXe Detector

 $\boldsymbol{\alpha}$ sources on thin wires

CW proton accelerator for ⁷Li(p,γ)⁸Be monochromatic γ 17.6MeV $\Pi^{-}p \rightarrow \Pi^{0}n$, one γ tagged by Nal monochromatic γ 55MeV

Simulation Studies

A Simulated Event

Study of sources of gamma rays by e⁺ annihilation in flight

Detailed background studies are underway

background gamma rays from the drift chamber cable ducts

MEG Prospects

- Physics run to start next year (spring summer).
 - Beam line commissioning to be completed this autumn.
 - Engineering run with positron spectrometer toward end of this year.
 - LXe detector installation & commissioning this winter.
- Should exceed the MEGA limit after a few months running.
- Data taking takes ~2 years with a muon beam of (I-3) x 10⁷ /sec to reach ~I x 10⁻¹³ sensitivity (90% CL).
- Aim for a significant result before LHC.

Personal Prospects for Muon LFV

- $\begin{array}{ll} \mu \rightarrow e \gamma & \text{MEG upgrade for } 10^{-14} \ @PSI \\ & \text{to measure angular distribution of } \mu \rightarrow e \gamma \\ & \text{or to further constrain it} \end{array}$
- $\mu \rightarrow 3e$ A new experiment for 10⁻¹⁴ @PSI
- $\mu \rightarrow e$ conversion

A new experiment for 10⁻¹⁴~10⁻¹⁶ @PSI/J-PARC/FNAL? a step toward PRISM/PRIME ~10⁻¹⁸

Conclusion

LFV is a clear & sensitive signal of new physics
 -- SUSY GUT, SUSY seesaw, extra-d

 The B Factories have greatly improved the τ LFV limits but start to suffer background events.

The MEG experiment will soon start an engineering run; Physics run expected to start next year. Stay tuned.

Expect more LFV experiments to follow.